Top Qs
Timeline
Chat
Perspective
Solar eclipse of April 6, 1875
Total eclipse From Wikipedia, the free encyclopedia
Remove ads
A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, April 6, 1875, with a magnitude of 1.0547. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.2 days before perigee (on April 7, 1875, at 10:50 UTC), the Moon's apparent diameter was larger.[1]
The path of totality was visible from parts of the modern-day Andaman and Nicobar Islands, Myanmar, Thailand, northwestern Cambodia, Laos, Vietnam, and southern Hainan. A partial solar eclipse was also visible for parts of Southern Africa, South Asia, Southeast Asia, and East Asia.
Remove ads
Observations
Astronomers J. N. Lockyer and Arthur Schuster traveled to observe the eclipse and measure spectral lines to determine the elemental contents of the solar corona.[2]
Eclipse details
Summarize
Perspective
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipses
Summarize
Perspective
Eclipses in 1875
- A total solar eclipse on April 6.
- A penumbral lunar eclipse on April 20.
- A penumbral lunar eclipse on September 15.
- An annular solar eclipse on September 29.
- A penumbral lunar eclipse on October 14.
Metonic
- Preceded by: Solar eclipse of June 18, 1871
- Followed by: Solar eclipse of January 22, 1879
Tzolkinex
- Preceded by: Solar eclipse of February 23, 1868
- Followed by: Solar eclipse of May 17, 1882
Half-Saros
- Preceded by: Lunar eclipse of March 31, 1866
- Followed by: Lunar eclipse of April 10, 1884
Tritos
- Preceded by: Solar eclipse of May 6, 1864
- Followed by: Solar eclipse of March 5, 1886
Solar Saros 127
- Preceded by: Solar eclipse of March 25, 1857
- Followed by: Solar eclipse of April 16, 1893
Inex
- Preceded by: Solar eclipse of April 25, 1846
- Followed by: Solar eclipse of March 17, 1904
Triad
- Preceded by: Solar eclipse of June 4, 1788
- Followed by: Solar eclipse of February 5, 1962
Solar eclipses of 1874–1877
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]
The partial solar eclipse on August 9, 1877 occurs in the next lunar year eclipse set.
Saros 127
This eclipse is a part of Saros series 127, repeating every 18 years, 11 days, and containing 82 events. The series started with a partial solar eclipse on October 10, 991 AD. It contains total eclipses from May 14, 1352 through August 15, 2091. There are no annular or hybrid eclipses in this set. The series ends at member 82 as a partial eclipse on March 21, 2452. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 31 at 5 minutes, 40 seconds on August 30, 1532. All eclipses in this series occur at the Moon’s ascending node of orbit.[5]
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Remove ads
Notes
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads