Top Qs
Timeline
Chat
Perspective
Solar eclipse of June 30, 1973
Total eclipse From Wikipedia, the free encyclopedia
Remove ads
A total solar eclipse occurred at the Moon's descending node of orbit on Saturday, June 30, 1973,[1][2] with a magnitude of 1.0792. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 11 hours after perigee (on June 30, 1973, at 0:50 UTC), the Moon's apparent diameter was larger.[3]
With a maximum eclipse of 7 minutes and 3.55 seconds, this was the last total solar eclipse that exceeds 7 minutes in this series. There will not be a longer total solar eclipse until June 25, 2150.
The greatest eclipse occurred in the Agadez area in the northwest of Niger not far from Algeria inside the Sahara Desert somewhat 40 km east of the small mountain of Ebenenanoua at 18.8 N and 5.6 E and occurred at 11:38 UTC.
The umbral portion of the path started near the border of Guyana and the Brazilian state Roraima, passed northern Dutch Guiana (today's Suriname), headed into the Atlantic, included one of the Portuguese Cape Verde (today's Cape Verde) Islands, which was Santo Antão, Nouadhibou and Nouakchott and other parts of Central Mauritania, northern Mali, the southernmost of Algeria, the middle and southeastern Niger, the middle of Chad, the Sudan including Darfur and parts that are now in the South Sudan including Kodok, a part of the northernmost Uganda, a part of northern Kenya, the southernmost of Somalia, and the Alphonse Group of British Seychelles (today's Seychelles). A partial eclipse was visible for parts of eastern South America, Africa, Southern Europe, and the Middle East.
Remove ads
Observations
Summarize
Perspective
This eclipse was observed by a group of scientists, which included Donald Liebenberg, from the Los Alamos National Laboratory. They used two airplanes to extend the apparent time of totality by flying along the eclipse path in the same direction as the Moon's shadow as it passed over Africa. One of the planes was a prototype (c/n 001) of what was later to become the Concorde, which has a top speed of almost 1,300 miles per hour (2,100 km/h) (Mach 2). This enabled scientists from Los Alamos, the Paris Observatory, the Kitt Peak National Observatory, Queen Mary University of London, the University of Aberdeen and CNRS to extend totality to more than 74 minutes; nearly 10 times longer than is possible when viewing a total solar eclipse from a stationary location.[4] The Concorde was specially modified with rooftop portholes for the mission, and is currently on display with the Solar Eclipse mission livery at Musée de l’air et de l’espace.[5] The data gathered resulted in three papers published in Nature[6] and a book.[7]
The eclipse was also observed by a charter flight from Mount San Antonio College in Southern California. The DC-8 with 150 passengers intercepted the eclipse at 35,000 feet (11,000 m) just off the east coast of Africa and tracked the eclipse for three minutes. The passengers rotated seats every 20 seconds so that each passenger had three 20 second opportunities at the window to observe and take pictures. A separate observation opportunity was provided on a specialized commercial cruise by the S.S. Canberra, which traveled from New York City to the Canary Islands and Dakar, Senegal, observing 5 minutes and 44 seconds of totality out in the Atlantic between those two stops in Africa.[8][9] That cruise's passengers included notables in the scientific community such as Neil Armstrong, Scott Carpenter, Isaac Asimov, Walter Sullivan, and the then 15-years old Neil deGrasse Tyson.[10][11]
Remove ads
Eclipse details
Summarize
Perspective
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[12]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
Related eclipses
Eclipses in 1973
Metonic
- Preceded by: Solar eclipse of September 11, 1969
- Followed by: Solar eclipse of April 18, 1977
Tzolkinex
- Preceded by: Solar eclipse of May 20, 1966
- Followed by: Solar eclipse of August 10, 1980
Half-Saros
- Preceded by: Lunar eclipse of June 25, 1964
- Followed by: Lunar eclipse of July 6, 1982
Tritos
- Preceded by: Solar eclipse of July 31, 1962
- Followed by: Solar eclipse of May 30, 1984
Solar Saros 136
- Preceded by: Solar eclipse of June 20, 1955
- Followed by: Solar eclipse of July 11, 1991
Inex
- Preceded by: Solar eclipse of July 20, 1944
- Followed by: Solar eclipse of June 10, 2002
Triad
- Preceded by: Solar eclipse of August 29, 1886
- Followed by: Solar eclipse of April 30, 2060
Solar eclipses of 1971–1974
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[13]
The partial solar eclipses on February 25, 1971 and August 20, 1971 occur in the previous lunar year eclipse set.
Saros 136
This eclipse is a part of Saros series 136, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on June 14, 1360. It contains annular eclipses from September 8, 1504 through November 12, 1594; hybrid eclipses from November 22, 1612 through January 17, 1703; and total eclipses from January 27, 1721 through May 13, 2496. The series ends at member 71 as a partial eclipse on July 30, 2622. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 9 at 32 seconds on September 8, 1504, and the longest duration of totality was produced by member 34 at 7 minutes, 7.74 seconds on June 20, 1955. All eclipses in this series occur at the Moon’s descending node of orbit.[14]
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Remove ads
Notes
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads