Top Qs
Timeline
Chat
Perspective
Solar eclipse of October 1, 1940
Total eclipse From Wikipedia, the free encyclopedia
Remove ads
A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, October 1, 1940,[1] with a magnitude of 1.0645. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 4 hours before perigee (on October 1, 1940, at 17:00 UTC), the Moon's apparent diameter was larger.[2]
Totality was visible from Colombia, Brazil, Venezuela and South Africa. A partial eclipse was visible for parts of the Caribbean, South America, Central Africa, and Southern Africa.
Remove ads
Observation
Members of the Joint Permanent Eclipse Committee of the Royal Society and Royal Astronomical Society made observations in Brazil with interferometers and spectrometers. Teams of the Royal Observatory, Greenwich and Royal Observatory, Cape of Good Hope (now combined into the South African Astronomical Observatory) went to Calvinia, South Africa to study the gravitational lens proposed by the general relativity. Other scientists went to the edge of the path of totality to study the spectral lines of the solar chromosphere. A joint team of the Heliophysical Observatory of the University of Cambridge and the Radcliffe Observatory in Pretoria, South Africa (now combined into the South African Astronomical Observatory) went to Nelspoort to study the extreme ultraviolet spectrum of the chromosphere and corona, and conducted polarization studies of the corona and sky around the sun.[3]
Remove ads
Eclipse details
Summarize
Perspective
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[4]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipses
Eclipses in 1940
- A penumbral lunar eclipse on March 23.
- An annular solar eclipse on April 7.
- A penumbral lunar eclipse on April 22.
- A total solar eclipse on October 1.
- A penumbral lunar eclipse on October 16.
Metonic
- Preceded by: Solar eclipse of December 13, 1936
- Followed by: Solar eclipse of July 20, 1944
Tzolkinex
- Preceded by: Solar eclipse of August 21, 1933
- Followed by: Solar eclipse of November 12, 1947
Half-Saros
- Preceded by: Lunar eclipse of September 26, 1931
- Followed by: Lunar eclipse of October 7, 1949
Tritos
- Preceded by: Solar eclipse of November 1, 1929
- Followed by: Solar eclipse of September 1, 1951
Solar Saros 133
- Preceded by: Solar eclipse of September 21, 1922
- Followed by: Solar eclipse of October 12, 1958
Inex
- Preceded by: Solar eclipse of October 22, 1911
- Followed by: Solar eclipse of September 11, 1969
Triad
- Preceded by: Solar eclipse of November 30, 1853
- Followed by: Solar eclipse of August 2, 2027
Solar eclipses of 1939–1942
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]
The partial solar eclipse on August 12, 1942 occurs in the next lunar year eclipse set.
Saros 133
This eclipse is a part of Saros series 133, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on July 13, 1219. It contains annular eclipses from November 20, 1435 through January 13, 1526; a hybrid eclipse on January 24, 1544; and total eclipses from February 3, 1562 through June 21, 2373. The series ends at member 72 as a partial eclipse on September 5, 2499. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 25 at 1 minutes, 14 seconds on November 30, 1453, and the longest duration of totality was produced by member 61 at 6 minutes, 50 seconds on August 7, 1850. All eclipses in this series occur at the Moon’s ascending node of orbit.[6]
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Remove ads
Notes
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads