Top Qs
Timeline
Chat
Perspective
Solar eclipse of August 22, 1979
20th-century annular solar eclipse From Wikipedia, the free encyclopedia
Remove ads
An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, August 22, 1979,[1] with a magnitude of 0.9329. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 15 hours before apogee (on August 23, 1979, at 8:10 UTC), the Moon's apparent diameter was smaller.[2]
Annularity was visible for a part of Antarctica. A partial eclipse was visible for parts of southern South America and Antarctica. This was the last of 40 umbral eclipses in Solar Saros 125.
Remove ads
Eclipse details
Summarize
Perspective
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Remove ads
Related eclipses
Eclipses in 1979
- A total solar eclipse on February 26.
- A partial lunar eclipse on March 13.
- An annular solar eclipse on August 22.
- A total lunar eclipse on September 6.
Metonic
- Preceded by: Solar eclipse of November 3, 1975
- Followed by: Solar eclipse of June 11, 1983
Tzolkinex
- Preceded by: Solar eclipse of July 10, 1972
- Followed by: Solar eclipse of October 3, 1986
Half-Saros
- Preceded by: Lunar eclipse of August 17, 1970
- Followed by: Lunar eclipse of August 27, 1988
Tritos
- Preceded by: Solar eclipse of September 22, 1968
- Followed by: Solar eclipse of July 22, 1990
Solar Saros 125
- Preceded by: Solar eclipse of August 11, 1961
- Followed by: Solar eclipse of September 2, 1997
Inex
- Preceded by: Solar eclipse of September 12, 1950
- Followed by: Solar eclipse of August 1, 2008
Triad
- Preceded by: Solar eclipse of October 20, 1892
- Followed by: Solar eclipse of June 22, 2066
Solar eclipses of 1979–1982
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]
The partial solar eclipses on June 21, 1982 and December 15, 1982 occur in the next lunar year eclipse set.
Saros 125
This eclipse is a part of Saros series 125, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on February 4, 1060. It contains total eclipses from June 13, 1276 through July 16, 1330; hybrid eclipses on July 26, 1348 and August 7, 1366; and annular eclipses from August 17, 1384 through August 22, 1979. The series ends at member 73 as a partial eclipse on April 9, 2358. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 14 at 1 minutes, 11 seconds on June 25, 1294, and the longest duration of annularity was produced by member 48 at 7 minutes, 23 seconds on July 10, 1907. All eclipses in this series occur at the Moon’s ascending node of orbit.[5]
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Remove ads
Notes
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads