Top Qs
Timeline
Chat
Perspective

Solar eclipse of May 20, 2012

21st-century annular solar eclipse From Wikipedia, the free encyclopedia

Solar eclipse of May 20, 2012
Remove ads

An annular solar eclipse occurred at the Moon’s descending node of orbit between Sunday, May 20 and Monday, May 21, 2012,[1][2][3] with a magnitude of 0.9439. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres or miles wide. Occurring about 1.3 days after apogee (on May 19, 2012, at 17:10 UTC), the Moon's apparent diameter was smaller.[4]

Quick Facts Gamma, Magnitude ...

The annular eclipse was the first visible from the contiguous United States since the solar eclipse of May 10, 1994 (Saros 128), and the first in Asia since the solar eclipse of January 15, 2010 (Saros 141).[5] The path of the eclipse's antumbra included heavily populated regions of China and Japan, and an estimated 100 million people in those areas were capable of viewing annularity. In the western United States, its path included 8 states, and an estimated 6 million people were capable of viewing annularity.

The eclipse was visible in a band spanning through East Asia, the Pacific Ocean, and North America. As a partial solar eclipse, it was visible from Greenland to Hawaii, and from eastern Indonesia at sunrise to western North America at sunset.

Remove ads

Visibility and viewing

Summarize
Perspective
Thumb
Animation of the eclipse

The antumbra had a magnitude of .94, stretched 236 kilometres (147 miles) wide, and traveled eastbound at an average rate of 1.00 kilometre (0.62 miles) per second, remaining north of the equator throughout the event. The longest duration of annularity was 5 minutes and 46 seconds, occurring just south of the Aleutian Islands.[6] The eclipse began on a Monday and ended on the previous Sunday, as it crossed the International Date Line.[5]

Asia

The annular eclipse commenced over the Chinese province of Guangxi at sunrise, at 6:06 a.m. China Standard Time. Travelling northeast, the antumbra of the eclipse approached and passed over the cities of Macau, Hong Kong, Guangzhou, and Xiamen, reaching Taipei by 6:10 a.m NST. After crossing the East China Sea, it passed over much of eastern Japan, including Osaka and Tokyo at 7:28 a.m and 7:32 a.m JST respectively, before entering the Pacific Ocean. The penumbra of the eclipse was visible throughout Eastern Asia and various islands in the Pacific Ocean until noon.[7][8]

The path of the antumbra over highly populated areas allowed at least an estimated 100 million people to view annularity.[9] Because the eclipse took place during the summer monsoon season in Southeast Asia, viewing conditions were not ideal in some areas, including Hong Kong.[10]

North America

After traveling approximately 4,000 miles (6,500 kilometers) across the Pacific Ocean, the antumbra entered North America between the coastlines of Oregon and California, reaching the coastal city of Eureka, California at 6:25 p.m PDT. After passing over Medford, Oregon and Redding, California, it had reached Reno, Nevada by 6:28 p.m PDT. The eclipse continued to travel southeast, passing 30 miles (48 km) north of Las Vegas, Nevada, over St. George, Utah, and reaching the Grand Canyon by approximately 6:33 p.m MST. After passing over Albuquerque, New Mexico and Lubbock, Texas, the eclipse terminated above central Texas at sunset, 8:38 p.m. CST.[7][6][11] An estimated 6.6 million people lived under the path of the antumbra.[12] The penumbra was visible throughout most of North America, including the islands of Hawaii.[6]

Remove ads

Eclipse details

Summarize
Perspective

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[13]

More information Event, Time (UTC) ...
More information Parameter, Value ...
Remove ads

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

More information May 20Descending node (new moon), June 4Ascending node (full moon) ...

Eclipses in 2012

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 128

Inex

Triad

Solar eclipses of 2011–2014

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[14]

The partial solar eclipses on January 4, 2011 and July 1, 2011 occur in the previous lunar year eclipse set.

More information series sets from 2011 to 2014, Descending node ...

Saros 128

This eclipse is a part of Saros series 128, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on August 29, 984 AD. It contains total eclipses from May 16, 1417 through June 18, 1471; hybrid eclipses from June 28, 1489 through July 31, 1543; and annular eclipses from August 11, 1561 through July 25, 2120. The series ends at member 73 as a partial eclipse on November 1, 2282. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 27 at 1 minutes, 45 seconds on June 7, 1453, and the longest duration of annularity was produced by member 48 at 8 minutes, 35 seconds on February 1, 1832. All eclipses in this series occur at the Moon’s descending node of orbit.[15]

More information Series members 47–68 occur between 1801 and 2200: ...

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

More information 21 eclipse events between May 21, 1993 and May 20, 2069, May 20–21 ...

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...
Remove ads

Notes

    References

    Loading related searches...

    Wikiwand - on

    Seamless Wikipedia browsing. On steroids.

    Remove ads