Top Qs
Timeline
Chat
Perspective
Solar eclipse of July 31, 1981
Total eclipse From Wikipedia, the free encyclopedia
Remove ads
A total solar eclipse occurred at the Moon's ascending node of orbit on Friday, July 31, 1981,[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15] with a magnitude of 1.0258. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.7 days after perigee (on July 27, 1981, at 10:20 UTC), the Moon's apparent diameter was larger.[16]
The moon's apparent diameter was 7 arcseconds larger than the February 4, 1981 annular solar eclipse.
The continental path of totality fell entirely within the Soviet Union, belonging to Georgia, Kazakhstan and Russia today. The southern part of Mount Elbrus, the highest mountain in Europe, also lay in the path of totality. A partial eclipse was visible for parts of Northern Europe, Asia, Alaska, western Canada, and Greenland. The eclipse was mostly seen on July 31, 1981, except for Alaska, northwestern Canada and Northwestern Hawaiian Islands, where a partial eclipse was seen on July 30 local time, and northern Greenland, where a partial eclipse started on July 30, passing midnight and ended on July 31 due to the midnight sun.
Remove ads
Observations
Scientists from the High Altitude Observatory of National Center for Atmospheric Research, E. O. Hulburt Center for Space Research of the United States Naval Research Laboratory and the Academy of Sciences of the Soviet Union made studies to the high altitudes of corona during the eclipse. A joint U.S.-Soviet observation team went to Bratsk, Irkutsk Oblast, Soviet Union. Scientists studied the three-dimensional structure of the corona based on coronagraph observations, images of the corona taken in Bratsk, and observations made from Solwind / P78-1 satellite.[17]
Remove ads
Eclipse details
Summarize
Perspective
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[18]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipses
Eclipses in 1981
- A penumbral lunar eclipse on January 20.
- An annular solar eclipse on February 4.
- A partial lunar eclipse on July 17.
- A total solar eclipse on July 31.
Metonic
- Preceded by: Solar eclipse of October 12, 1977
- Followed by: Solar eclipse of May 19, 1985
Tzolkinex
- Preceded by: Solar eclipse of June 20, 1974
- Followed by: Solar eclipse of September 11, 1988
Half-Saros
- Preceded by: Lunar eclipse of July 26, 1972
- Followed by: Lunar eclipse of August 6, 1990
Tritos
- Preceded by: Solar eclipse of August 31, 1970
- Followed by: Solar eclipse of June 30, 1992
Solar Saros 145
- Preceded by: Solar eclipse of July 20, 1963
- Followed by: Solar eclipse of August 11, 1999
Inex
- Preceded by: Solar eclipse of August 20, 1952
- Followed by: Solar eclipse of July 11, 2010
Triad
- Preceded by: Solar eclipse of September 29, 1894
- Followed by: Solar eclipse of May 31, 2068
Solar eclipses of 1979–1982
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[19]
The partial solar eclipses on June 21, 1982 and December 15, 1982 occur in the next lunar year eclipse set.
Saros 145
This eclipse is a part of Saros series 145, repeating every 18 years, 11 days, and containing 77 events. The series started with a partial solar eclipse on January 4, 1639. It contains an annular eclipse on June 6, 1891; a hybrid eclipse on June 17, 1909; and total eclipses from June 29, 1927 through September 9, 2648. The series ends at member 77 as a partial eclipse on April 17, 3009. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 15 at 6 seconds (by default) on June 6, 1891, and the longest duration of totality will be produced by member 50 at 7 minutes, 12 seconds on June 25, 2522. All eclipses in this series occur at the Moon’s ascending node of orbit.[20]
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
The partial solar eclipses on December 18, 2188 (part of Saros 164) and November 18, 2199 (part of Saros 165) are also a part of this series but are not included in the table below.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Remove ads
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads