Top Qs
Timeline
Chat
Perspective
Solar eclipse of February 14, 1915
20th-century annular solar eclipse From Wikipedia, the free encyclopedia
Remove ads
An annular solar eclipse occurred at the Moon's ascending node of orbit on Sunday, February 14, 1915,[1][2][3][4][5] with a magnitude of 0.9789. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 6.7 days after perigee (on February 7, 1915, at 13:20 UTC) and 7.1 days before apogee (on February 21, 1915, at 5:50 UTC).[6]
Annularity was visible from Australia, Papua in Dutch East Indies (today's Indonesia), German New Guinea (now belonging to Papua New Guinea), and the South Seas Mandate of Japan (the parts now belonging to FS Micronesia and Marshall Islands, including Palikir). A partial eclipse was visible for parts of Antarctica, Australia, Oceania, and Southeast Asia.
The eclipse occurred on February 14 in the whole path of annularity, and also most of the places where a partial eclipse was visible. It was on February 13 only in a small part east of the International Date Line.
The date of this eclipse visible from Asia, February 14, was also Lunar New Year, celebrated in multiple countries.
Remove ads
Eclipse details
Summarize
Perspective
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[7]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
Remove ads
Related eclipses
Eclipses in 1915
- A penumbral lunar eclipse on January 31.
- An annular solar eclipse on February 14.
- A penumbral lunar eclipse on March 1.
- A penumbral lunar eclipse on July 26.
- An annular solar eclipse on August 10.
- A penumbral lunar eclipse on August 24.
Metonic
- Preceded by: Solar eclipse of April 28, 1911
- Followed by: Solar eclipse of December 3, 1918
Tzolkinex
- Preceded by: Solar eclipse of January 3, 1908
- Followed by: Solar eclipse of March 28, 1922
Half-Saros
- Preceded by: Lunar eclipse of February 9, 1906
- Followed by: Lunar eclipse of February 20, 1924
Tritos
- Preceded by: Solar eclipse of March 17, 1904
- Followed by: Solar eclipse of January 14, 1926
Solar Saros 129
- Preceded by: Solar eclipse of February 1, 1897
- Followed by: Solar eclipse of February 24, 1933
Inex
- Preceded by: Solar eclipse of March 5, 1886
- Followed by: Solar eclipse of January 25, 1944
Triad
- Preceded by: Solar eclipse of April 14, 1828
- Followed by: Solar eclipse of December 14, 2001
Solar eclipses of 1913–1917
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[8]
The partial solar eclipses on April 6, 1913 and September 30, 1913 occur in the previous lunar year eclipse set, and the solar eclipses on December 24, 1916 (partial), June 19, 1917 (partial), and December 14, 1917 (annular) occur in the next lunar year eclipse set.
Saros 129
This eclipse is a part of Saros series 129, repeating every 18 years, 11 days, and containing 80 events. The series started with a partial solar eclipse on October 3, 1103. It contains annular eclipses from May 6, 1464 through March 18, 1969; hybrid eclipses from March 29, 1987 through April 20, 2023; and total eclipses from April 30, 2041 through July 26, 2185. The series ends at member 80 as a partial eclipse on February 21, 2528. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 34 at 5 minutes, 10 seconds on October 4, 1698, and the longest duration of totality will be produced by member 58 at 3 minutes, 43 seconds on June 25, 2131. All eclipses in this series occur at the Moon’s ascending node of orbit.[9]
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Remove ads
Notes
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads