Top Qs
Timeline
Chat
Perspective

Solar eclipse of February 3, 1916

Total eclipse From Wikipedia, the free encyclopedia

Solar eclipse of February 3, 1916
Remove ads

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, February 3, 1916,[1][2][3][4][5][6][7][8] with a magnitude of 1.028. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring 1.7 days after perigee (on February 2, 1916, at 0:00 UTC), the Moon's apparent diameter was larger.[9]

Quick Facts Gamma, Magnitude ...

Totality was visible in Colombia, Venezuela, and the whole Guadeloupe except Marie-Galante, Saint Martin and Saint Barthélemy. A partial eclipse was visible for parts of North America, Central America, northern South America, Northwest Africa, and Western Europe.

Remove ads

Observations

The Argentine National Observatory sent a team to Tucacas, Falcón, Venezuela. Due to the economic depression caused by World War I, the best equipment could not be transported to the observation site. The team left Córdoba Province, Argentina on December 2, 1915, and arrived in Tucacas on January 14, 1916. It rained heavily within the first week after their arrival. There was still heavy rain on the early morning of February 3. The weather got better after that. By the time of totality, there was only a layer of mist, which slightly affected the observation. The team successfully took images of the corona and made spectral observations.[10] The results were also compared with a later total solar eclipse of February 26, 1998 which was also visible in Falcón, Venezuela.[11]

Remove ads

Eclipse details

Summarize
Perspective

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[12]

More information Event, Time (UTC) ...
More information Parameter, Value ...
Remove ads

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

More information January 20 Descending node (full moon), February 3 Ascending node (new moon) ...

Eclipses in 1916

Metonic

Tzolkinex

Half-Saros

  • Preceded by: Lunar eclipse of January 29, 1907
  • Followed by: Lunar eclipse of February 8, 1925

Tritos

Solar Saros 139

Inex

Triad

Solar eclipse of 1913–1917

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[13]

The partial solar eclipses on April 6, 1913 and September 30, 1913 occur in the previous lunar year eclipse set, and the solar eclipses on December 24, 1916 (partial), June 19, 1917 (partial), and December 14, 1917 (annular) occur in the next lunar year eclipse set.

More information series sets from 1913 to 1917, Descending node ...

Saros 139

This eclipse is a part of Saros series 139, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 17, 1501. It contains hybrid eclipses from August 11, 1627 through December 9, 1825 and total eclipses from December 21, 1843 through March 26, 2601. There are no annular eclipses in this set. The series ends at member 71 as a partial eclipse on July 3, 2763. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 61 at 7 minutes, 29.22 seconds on July 16, 2186. This date is the longest solar eclipse computed between 4000 BC and AD 6000.[14] All eclipses in this series occur at the Moon’s ascending node of orbit.[15]

More information Series members 18–39 occur between 1801 and 2200: ...

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

More information 23 eclipse events between February 3, 1859 and June 29, 1946, February 1–3 ...

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on December 18, 2188 (part of Saros 164) and November 18, 2199 (part of Saros 165) are also a part of this series but are not included in the table below.

More information Series members between 1801 and 2134 ...

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...
Remove ads

Notes

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads