Top Qs
Timeline
Chat
Perspective
Solar eclipse of December 14, 1917
20th-century annular solar eclipse From Wikipedia, the free encyclopedia
Remove ads
An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, December 14, 1917,[1] with a magnitude of 0.9791. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring 4.6 days before apogee (on December 18, 1917, at 22:10 UTC), the Moon's apparent diameter was smaller.[2]
This was the last of four solar eclipses in 1917, with the others occurring on January 23, June 19 and July 19.
The path of annularity crossed Antarctica. A partial eclipse was visible for parts of Antarctica, southern South America, and Australia. This annular eclipse is notable in that the path of annularity passed over the South Pole.
Remove ads
Eclipse details
Summarize
Perspective
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Remove ads
Related eclipses
Eclipses in 1917
- A total lunar eclipse on January 8.
- A partial solar eclipse on January 23.
- A partial solar eclipse on June 19.
- A total lunar eclipse on July 4.
- A partial solar eclipse on July 19.
- An annular solar eclipse on December 14.
- A total lunar eclipse on December 28.
Metonic
- Preceded by: Solar eclipse of February 25, 1914
- Followed by: Solar eclipse of October 1, 1921
Tzolkinex
- Preceded by: Solar eclipse of November 2, 1910
- Followed by: Solar eclipse of January 24, 1925
Half-Saros
- Preceded by: Lunar eclipse of December 7, 1908
- Followed by: Lunar eclipse of December 19, 1926
Tritos
- Preceded by: Solar eclipse of January 14, 1907
- Followed by: Solar eclipse of November 12, 1928
Solar Saros 121
- Preceded by: Solar eclipse of December 3, 1899
- Followed by: Solar eclipse of December 25, 1935
Inex
- Preceded by: Solar eclipse of January 1, 1889
- Followed by: Solar eclipse of November 23, 1946
Triad
- Preceded by: Solar eclipse of February 12, 1831
- Followed by: Solar eclipse of October 14, 2004
Solar eclipses of 1916–1920
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]
The solar eclipses on February 3, 1916 (total), July 30, 1916 (annular), January 23, 1917 (partial), and July 19, 1917 (partial) occur in the previous lunar year eclipse set.
Saros 121
This eclipse is a part of Saros series 121, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on April 25, 944 AD. It contains total eclipses from July 10, 1070 through October 9, 1809; hybrid eclipses on October 20, 1827 and October 30, 1845; and annular eclipses from November 11, 1863 through February 28, 2044. The series ends at member 71 as a partial eclipse on June 7, 2206. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 39 at 6 minutes, 20 seconds on June 21, 1629, and the longest duration of annularity will be produced by member 62 at 2 minutes, 27 seconds on February 28, 2044. All eclipses in this series occur at the Moon’s ascending node of orbit.[5]
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Remove ads
Notes
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads