Top Qs
Timeline
Chat
Perspective
Solar eclipse of July 1, 2011
21st-century partial solar eclipse From Wikipedia, the free encyclopedia
Remove ads
A partial solar eclipse occurred at the Moon’s descending node of orbit on Friday, July 1, 2011,[1][2][3] with a magnitude of 0.0971.[4] A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
Remove ads
This eclipse was the third of four partial solar eclipses in 2011, with the others occurring on January 4, June 1 and November 25.
This is the first solar eclipse of Saros series 156, only visible as a partial solar eclipse in a small area south of South Africa and north of Antarctica. It is the first new saros series to begin since saros 155 began with the partial solar eclipse of June 17, 1928.[5]
Remove ads
Images
Eclipse details
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[6]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
Related eclipses
Eclipses in 2011
- A partial solar eclipse on January 4.
- A partial solar eclipse on June 1.
- A total lunar eclipse on June 15.
- A partial solar eclipse on July 1.
- A partial solar eclipse on November 25.
- A total lunar eclipse on December 10.
Metonic
- Preceded by: Solar eclipse of September 11, 2007
Tzolkinex
- Followed by: Solar eclipse of August 11, 2018
Half-Saros
- Preceded by: Lunar eclipse of June 24, 2002
- Followed by: Lunar eclipse of July 5, 2020
Tritos
- Preceded by: Solar eclipse of July 31, 2000
Solar Saros 156
- Followed by: Solar eclipse of July 11, 2029
Inex
- Preceded by: Solar eclipse of July 20, 1982
Triad
- Preceded by: Solar eclipse of August 30, 1924
Solar eclipses of 2008–2011
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[7]
The partial solar eclipses on June 1, 2011 and November 25, 2011 occur in the next lunar year eclipse set.
Saros 156
This eclipse is a part of Saros series 156, repeating every 18 years, 11 days, and containing 69 events. The series started with a partial solar eclipse on July 1, 2011. It contains annular eclipses from September 26, 2155 through April 7, 3075. There are no hybrid or total eclipses in this set. The series ends at member 69 as a partial eclipse on July 14, 3237. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity will be produced by member 29 at 8 minutes, 28 seconds on May 3, 2516. All eclipses in this series occur at the Moon’s descending node of orbit.[8]
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
The partial solar eclipse on October 24, 2098 (part of Saros 164) is also a part of this series but is not included in the table below.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Remove ads
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads