Top Qs
Timeline
Chat
Perspective

Solar eclipse of October 22, 1911

20th-century annular solar eclipse From Wikipedia, the free encyclopedia

Solar eclipse of October 22, 1911
Remove ads

An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, October 22, 1911,[1][2][3] with a magnitude of 0.965. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.75 days before apogee (on October 27, 1911, at 22:30 UTC), the Moon's apparent diameter was larger.[4]

Quick facts Gamma, Magnitude ...

Annularity was visible from the Russian Empire (the parts now belonging to Kazakhstan, Uzbekistan and Kyrgyzstan), China, French Indochina (the part now belonging to Vietnam), Philippines, Dutch East Indies (today's Indonesia), Territory of Papua (now belonging to Papua New Guinea) including the capital city Port Moresby, and British Western Pacific Territories (the parts now belonging to Solomon Islands and Tuvalu, including the city of Honiara and Tulagi). A partial eclipse was visible for parts of South Asia, Southeast Asia, East Asia, Australia, and Oceania.

Remove ads

Eclipse details

Summarize
Perspective

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the Moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[5]

More information Event, Time (UTC) ...
More information Parameter, Value ...
Remove ads

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

More information October 22 Descending node (new moon), November 6 Ascending node (full moon) ...
Remove ads

Eclipses in 1911

Metonic

Tzolkinex

Half-Saros

  • Preceded by: Lunar eclipse of October 17, 1902
  • Followed by: Lunar eclipse of October 27, 1920

Tritos

Solar Saros 132

Inex

Triad

Solar eclipses of 1910–1913

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[6]

The partial solar eclipse on August 31, 1913 occurs in the next lunar year eclipse set.

More information series sets from 1910 to 1913, Ascending node ...

Saros 132

This eclipse is a part of Saros series 132, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on August 13, 1208. It contains annular eclipses from March 17, 1569 through March 12, 2146; hybrid eclipses on March 23, 2164 and April 3, 2182; and total eclipses from April 14, 2200 through June 19, 2308. The series ends at member 71 as a partial eclipse on September 25, 2470. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 25 at 6 minutes, 56 seconds on May 9, 1641, and the longest duration of totality will be produced by member 61 at 2 minutes, 14 seconds on June 8, 2290. All eclipses in this series occur at the Moon’s descending node of orbit.[7]

More information Series members 34–56 occur between 1801 and 2200: ...

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

More information 22 eclipse events between March 16, 1866 and August 9, 1953, March 16–17 ...

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...
Remove ads

Notes

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads