Top Qs
Timeline
Chat
Perspective
Solar eclipse of October 30, 1845
Hybrid (annular/total) solar eclipse October 30, 1845 From Wikipedia, the free encyclopedia
Remove ads
A total solar eclipse occurred at the Moon's ascending node of orbit between Thursday, October 30 and Friday, October 31, 1845, with a magnitude of 1.0005. It was a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.4 days before perigee (on November 3, 1845, at 10:40 UTC), the Moon's apparent diameter was larger.[1]
![]() | This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
The greatest eclipse was in northeasternmost Antarctica south of where the Indian and Pacific Ocean divides at 69.1 S and 144.5 E at 23:51 UTC (9:51 am on October 31), in that portion of Antarctica and the surrounding waters it shown as a total eclipse, the remainder was as an annular, first in the Indian Ocean then in the Antarctic Peninsula.[2]
Remove ads
Description
The eclipse was visible in the islands of Java, Bali, Sunda (the three compromising a part of Indonesia today) and Timor including Portuguese Timor (now East Timor), the Asian islands, almost the whole of Australia with the exception of the Cape York Peninsula, Lord Howe Island, Norfolk Island, Macquarrie Islands, New Zealand, Chatham Islands, Antipodes and some remaining small islands.
In Australia, it showed up to 10% obscuration in the south of the Gulf of Carpentaria, around 15% in Brisbane, 25–30% in Central Australia, around 40% in Sydney, 50% in Melbourne, around 55% in Tasmania and the Nullarbor Plain and around 60% in Perth, Western Australia. Elsewhere it showed 10% in the north tip of New Zealand's North Island, up to 30% in the area of Wellington, 45% in Otago. and 60% in the Chatham Islands. It was also around 90% in the shores of Western Antarctica and around the 180th meridian.
The rim of the eclipse included the area south of Cairns, Queensland, the Coral Sea and Cook Islands.
The eclipse started at sunrise in Western Australia and finished at sunset in the Antarctic Peninsula and southwest of Patagonia in South America.[2]
Remove ads
Eclipse details
Summarize
Perspective
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipses
Summarize
Perspective
Eclipses in 1845
- An annular solar eclipse on May 6.
- A total lunar eclipse on May 21.
- A hybrid solar eclipse on October 30.
- A partial lunar eclipse on November 14.
Metonic
- Preceded by: Solar eclipse of January 11, 1842
- Followed by: Solar eclipse of August 18, 1849
Tzolkinex
- Preceded by: Solar eclipse of September 18, 1838
- Followed by: Solar eclipse of December 11, 1852
Half-Saros
- Preceded by: Lunar eclipse of October 24, 1836
- Followed by: Lunar eclipse of November 4, 1854
Tritos
- Preceded by: Solar eclipse of November 30, 1834
- Followed by: Solar eclipse of September 29, 1856
Solar Saros 121
- Preceded by: Solar eclipse of October 20, 1827
- Followed by: Solar eclipse of November 11, 1863
Inex
- Preceded by: Solar eclipse of November 19, 1816
- Followed by: Solar eclipse of October 10, 1874
Triad
- Preceded by: Solar eclipse of December 30, 1758
- Followed by: Solar eclipse of August 31, 1932
Solar eclipses of 1844–1848
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]
The partial solar eclipses on June 16, 1844 and December 9, 1844 occur in the previous lunar year eclipse set, and the partial solar eclipses on March 5, 1848 and August 28, 1848 occur in the next lunar year eclipse set.
Saros 121
This eclipse is a part of Saros series 121, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on April 25, 944 AD. It contains total eclipses from July 10, 1070 through October 9, 1809; hybrid eclipses on October 20, 1827 and October 30, 1845; and annular eclipses from November 11, 1863 through February 28, 2044. The series ends at member 71 as a partial eclipse on June 7, 2206. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 39 at 6 minutes, 20 seconds on June 21, 1629, and the longest duration of annularity will be produced by member 62 at 2 minutes, 27 seconds on February 28, 2044. All eclipses in this series occur at the Moon’s ascending node of orbit.[5]
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Remove ads
See also
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads