Top Qs
Timeline
Chat
Perspective
Solar eclipse of December 16, 2085
Future annular solar eclipse From Wikipedia, the free encyclopedia
Remove ads
An annular solar eclipse will occur at the Moon's ascending node of orbit between Sunday, December 16 and Monday, December 17, 2085,[1] with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.7 days before perigee (on December 20, 2085, at 14:40 UTC), the Moon's apparent diameter will be larger.[2]
The path of annularity will be visible from parts of Micronesia and southwestern Mexico. A partial solar eclipse will also be visible for parts of northern Australia, Oceania, Hawaii, and western North America.
Remove ads
Eclipse details
Summarize
Perspective
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]
Remove ads
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Remove ads
Related eclipses
Eclipses in 2085
- A penumbral lunar eclipse on January 10.
- A penumbral lunar eclipse on June 8.
- An annular solar eclipse on June 22.
- A penumbral lunar eclipse on July 7.
- A penumbral lunar eclipse on December 1.
- An annular solar eclipse on December 16.
Metonic
- Preceded by: Solar eclipse of February 27, 2082
- Followed by: Solar eclipse of October 4, 2089
Tzolkinex
- Preceded by: Solar eclipse of November 4, 2078
- Followed by: Solar eclipse of January 27, 2093
Half-Saros
- Preceded by: Lunar eclipse of December 10, 2076
- Followed by: Lunar eclipse of December 21, 2094
Tritos
- Preceded by: Solar eclipse of January 16, 2075
- Followed by: Solar eclipse of November 15, 2096
Solar Saros 143
- Preceded by: Solar eclipse of December 6, 2067
- Followed by: Solar eclipse of December 29, 2103
Inex
- Preceded by: Solar eclipse of January 5, 2057
- Followed by: Solar eclipse of November 27, 2114
Triad
- Preceded by: Solar eclipse of February 16, 1999
- Followed by: Solar eclipse of October 17, 2172
Solar eclipses of 2083–2087
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]
The partial solar eclipses on February 16, 2083 and August 13, 2083 occur in the previous lunar year eclipse set, and the partial solar eclipses on May 2, 2087 and October 26, 2087 occur in the next lunar year eclipse set.
Saros 143
This eclipse is a part of Saros series 143, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 7, 1617. It contains total eclipses from June 24, 1797 through October 24, 1995; hybrid eclipses from November 3, 2013 through December 6, 2067; and annular eclipses from December 16, 2085 through September 16, 2536. The series ends at member 72 as a partial eclipse on April 23, 2897. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 16 at 3 minutes, 50 seconds on August 19, 1887, and the longest duration of annularity will be produced by member 51 at 4 minutes, 54 seconds on September 6, 2518. All eclipses in this series occur at the Moon’s ascending node of orbit.[5]
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Remove ads
Notes
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads