Top Qs
Timeline
Chat
Perspective

5-cell honeycomb

Geometric figure From Wikipedia, the free encyclopedia

Remove ads

In four-dimensional Euclidean geometry, the 4-simplex honeycomb, 5-cell honeycomb or pentachoric-dispentachoric honeycomb is a space-filling tessellation honeycomb. It is composed of 5-cells and rectified 5-cells facets in a ratio of 1:1.

More information ...
Remove ads

Structure

Cells of the vertex figure are ten tetrahedrons and 20 triangular prisms, corresponding to the ten 5-cells and 20 rectified 5-cells that meet at each vertex. All the vertices lie in parallel realms in which they form alternated cubic honeycombs, the tetrahedra being either tops of the rectified 5-cell or the bases of the 5-cell, and the octahedra being the bottoms of the rectified 5-cell.[1]

Alternate names

  • Cyclopentachoric tetracomb
  • Pentachoric-dispentachoric tetracomb

Projection by folding

The 5-cell honeycomb can be projected into the 2-dimensional square tiling by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:

More information , ...

Two different aperiodic tilings with 5-fold symmetry can be obtained by projecting two-dimensional slices of the honeycomb: the Penrose tiling composed of rhombi, and the Tübingen triangle tiling composed of isosceles triangles.[2]

A4 lattice

The vertex arrangement of the 5-cell honeycomb is called the A4 lattice, or 4-simplex lattice. The 20 vertices of its vertex figure, the runcinated 5-cell represent the 20 roots of the Coxeter group.[3][4] It is the 4-dimensional case of a simplectic honeycomb.

The A*
4
lattice[5] is the union of five A4 lattices, and is the dual to the omnitruncated 5-simplex honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 5-cell

= dual of
Remove ads
Summarize
Perspective

The tops of the 5-cells in this honeycomb adjoin the bases of the 5-cells, and vice versa, in adjacent laminae (or layers); but alternating laminae may be inverted so that the tops of the rectified 5-cells adjoin the tops of the rectified 5-cells and the bases of the 5-cells adjoin the bases of other 5-cells. This inversion results in another non-Wythoffian uniform convex honeycomb. Octahedral prisms and tetrahedral prisms may be inserted in between alternated laminae as well, resulting in two more non-Wythoffian elongated uniform honeycombs.[6]

This honeycomb is one of seven unique uniform honeycombs[7] constructed by the Coxeter group. The symmetry can be multiplied by the symmetry of rings in the Coxeter–Dynkin diagrams:

More information , ...

Rectified 5-cell honeycomb

More information ...

The rectified 4-simplex honeycomb or rectified 5-cell honeycomb is a space-filling tessellation honeycomb.

Alternate names

  • small cyclorhombated pentachoric tetracomb
  • small prismatodispentachoric tetracomb

Cyclotruncated 5-cell honeycomb

More information ...

The cyclotruncated 4-simplex honeycomb or cyclotruncated 5-cell honeycomb is a space-filling tessellation honeycomb. It can also be seen as a birectified 5-cell honeycomb.

It is composed of 5-cells, truncated 5-cells, and bitruncated 5-cells facets in a ratio of 2:2:1. Its vertex figure is a tetrahedral antiprism, with 2 regular tetrahedron, 8 triangular pyramid, and 6 tetragonal disphenoid cells, defining 2 5-cell, 8 truncated 5-cell, and 6 bitruncated 5-cell facets around a vertex.

It can be constructed as five sets of parallel hyperplanes that divide space into two half-spaces. The 3-space hyperplanes contain quarter cubic honeycombs as a collection facets.[8]

Alternate names

  • Cyclotruncated pentachoric tetracomb
  • Small truncated-pentachoric tetracomb

Truncated 5-cell honeycomb

More information ...

The truncated 4-simplex honeycomb or truncated 5-cell honeycomb is a space-filling tessellation honeycomb. It can also be called a cyclocantitruncated 5-cell honeycomb.

Alaternate names

  • Great cyclorhombated pentachoric tetracomb
  • Great truncated-pentachoric tetracomb

Cantellated 5-cell honeycomb

More information ...

The cantellated 4-simplex honeycomb or cantellated 5-cell honeycomb is a space-filling tessellation honeycomb. It can also be called a cycloruncitruncated 5-cell honeycomb.


Alternate names

  • Cycloprismatorhombated pentachoric tetracomb
  • Great prismatodispentachoric tetracomb

Bitruncated 5-cell honeycomb

More information ...

The bitruncated 4-simplex honeycomb or bitruncated 5-cell honeycomb is a space-filling tessellation honeycomb. It can also be called a cycloruncicantitruncated 5-cell honeycomb.

Alternate names

  • Great cycloprismated pentachoric tetracomb
  • Grand prismatodispentachoric tetracomb

Omnitruncated 5-cell honeycomb

More information ...

The omnitruncated 4-simplex honeycomb or omnitruncated 5-cell honeycomb is a space-filling tessellation honeycomb. It can also be seen as a cyclosteriruncicantitruncated 5-cell honeycomb.

It is composed entirely of omnitruncated 5-cell (omnitruncated 4-simplex) facets.

Coxeter calls this Hinton's honeycomb after C. H. Hinton, who described it in his book The Fourth Dimension in 1906.[9]

The facets of all omnitruncated simplectic honeycombs are called permutohedra and can be positioned in n+1 space with integral coordinates, permutations of the whole numbers (0,1,...,n).

Alternate names

  • Omnitruncated cyclopentachoric tetracomb
  • Great-prismatodecachoric tetracomb

A4* lattice

The A*
4
lattice is the union of five A4 lattices, and is the dual to the omnitruncated 5-cell honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 5-cell.[10]

= dual of
Remove ads

Alternated form

This honeycomb can be alternated, creating omnisnub 5-cells with irregular 5-cells created at the deleted vertices. Although it is not uniform, the 5-cells have a symmetry of order 10.

See also

Regular and uniform honeycombs in 4-space:

Notes

Loading content...

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads