Truncated infinite-order triangular tiling

From Wikipedia, the free encyclopedia

Truncated infinite-order triangular tiling

In geometry, the truncated infinite-order triangular tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of t{3,∞}.

More information Infinite-order truncated triangular tiling ...
Infinite-order truncated triangular tiling
Thumb
Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration.6.6
Schläfli symbolt{3,}
Wythoff symbol2 | 3
Coxeter diagram
Symmetry group[,3], (*32)
Dualapeirokis apeirogonal tiling
PropertiesVertex-transitive
Close

Symmetry

Thumb
Truncated infinite-order triangular tiling with mirror lines, .

The dual of this tiling represents the fundamental domains of *∞33 symmetry. There are no mirror removal subgroups of [(∞,3,3)], but this symmetry group can be doubled to ∞32 symmetry by adding a mirror.

More information Type, Reflectional ...
Small index subgroups of [(∞,3,3)], (*∞33)
Type Reflectional Rotational
Index 1 2
Diagram Thumb Thumb
Coxeter
(orbifold)
[(∞,3,3)]

(*∞33)
[(∞,3,3)]+

(∞33)
Close
Summarize
Perspective

This hyperbolic tiling is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (6.n.n), and [n,3] Coxeter group symmetry.

More information Sym.*n42 [n,3], Spherical ...
*n32 symmetry mutation of truncated tilings: n.6.6
Sym.
*n42
[n,3]
Spherical Euclid. Compact Parac. Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
[12i,3] [9i,3] [6i,3]
Truncated
figures
Config. 2.6.6 3.6.6 4.6.6 5.6.6 6.6.6 7.6.6 8.6.6 .6.6 12i.6.6 9i.6.6 6i.6.6
n-kis
figures
Config. V2.6.6 V3.6.6 V4.6.6 V5.6.6 V6.6.6 V7.6.6 V8.6.6 V.6.6 V12i.6.6 V9i.6.6 V6i.6.6
Close
More information Symmetry: [∞,3], (*∞32), [∞,3]+ (∞32) ...
Paracompact uniform tilings in [,3] family
Symmetry: [,3], (*32) [,3]+
(32)
[1+,,3]
(*33)
[,3+]
(3*)

=

=

=
=
or
=
or

=
{,3} t{,3} r{,3} t{3,} {3,} rr{,3} tr{,3} sr{,3} h{,3} h2{,3} s{3,}
Uniform duals
V3 V3.. V(3.)2 V6.6. V3 V4.3.4. V4.6. V3.3.3.3. V(3.)3 V3.3.3.3.3.
Close
More information Symmetry: [(∞,3,3)], (*∞33), [(∞,3,3)]+, (∞33) ...
Paracompact hyperbolic uniform tilings in [(,3,3)] family
Symmetry: [(,3,3)], (*33) [(,3,3)]+, (33)
Thumb Thumb Thumb Thumb Thumb Thumb Thumb Thumb
(,,3) t0,1(,3,3) t1(,3,3) t1,2(,3,3) t2(,3,3) t0,2(,3,3) t0,1,2(,3,3) s(,3,3)
Dual tilings
Thumb Thumb
V(3.)3 V3..3. V(3.)3 V3.6..6 V(3.3) V3.6..6 V6.6. V3.3.3.3.3.
Close

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.