Top Qs
Timeline
Chat
Perspective
Withaferin A
Chemical compound From Wikipedia, the free encyclopedia
Remove ads
Withaferin A is a steroidal lactone, derived from Acnistus arborescens,[1] Withania somnifera[2] and other members of family Solanaceae. It is the first member of the withanolide class of ergostane type product to be discovered.
Remove ads
Structure
Withanolides are a group of naturally occurring C28- steroidal lactones. They contain four cycloalkane ring structures, three cyclohexane rings and one cyclopentane ring.[3] Withaferin A is highly reactive because of the ketone-containing unsaturated A ring, the epoxide in the B ring, and the unsaturated lactone ring. The double bond in ring A and the epoxide ring are mainly responsible for the cytotoxicity. The 22nd and 26th carbons of the ergostane skeleton in withaferin A and related steroidal compounds are oxidized to form a six-membered delta lactone unit. NMR spectral analysis identifies C3 in the unsaturated A ring as the main nucleophilic target site for ethyl mercaptan, thiophenol and L-cysteine ethyl ester in vitro.[3] A library of 2, 3-dihydro-3β-substituted derivatives are synthesized by regio/stereoselective Michael addition to ring A.
Remove ads
Regulation
Transcription factor NF-κB in vitro
NF-κB is a transcription factor that regulates many genes involved in cell survival, growth, immune response and angiogenesis. Withaferin A inhibits NF-κB at a very low concentration by targeting the ubiquitin-mediated proteasome pathway (UPP) in endothelial cells.[2] In vitro experiments demonstrated that withaferin A inhibits other transcription factors including Ap1[4] and Sp1.[5]
Remove ads
Biosynthesis

In the Withania somnifera plant, the withaferin A is present in the leaves. Withanolides are terpenoids, which are synthesized in plants using isoprenoids as precursors. Isoprenoids can be synthesized through mevalonate or 1-deoxy-D-xylulose 5-phosphate pathways. Isoprenogenesis significantly governs withanolide synthesis.[6]
Isoprenoids form squalene, which then goes through a variety of intermediate steps to form 24-methylenecholesterol - the sterol precursor of the withanolides.[7]
The biosynthesis of withaferin A uses enzymes such as squalene epoxidase (SQE), cycloartenol synthase (CAS), sterol methyl transferase (SMT), and obtusifoliol-14 –demethylase (ODM).[8]

To produce withaferin A from 24-methylene cholesterol, the molecule undergoes several functional changes including formation of a ketone, epoxide, 2 hydroxyl groups, and lactone ring.[9]
See also
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads