Hiperperfekta nombro

From Wikipedia, the free encyclopedia

Remove ads

En matematiko, k-hiperperfekta nombro estas natura nombro n por kiu

n=1+k(σ(n)-n-1) ,
Klasifiko de entjeroj laŭ dividebleco
Formoj de faktorado:
Primo
Komponita nombro
Pova nombro
Kvadrato-libera entjero
Aĥila nombro
Nombroj kun limigitaj sumoj de divizoroj:
Perfekta nombro
Preskaŭ perfekta nombro
Kvazaŭperfekta nombro
Multiplika perfekta nombro
Hiperperfekta nombro
Unuargumenta perfekta nombro
Duonperfekta nombro
Primitiva duonperfekta nombro
Praktika nombro
Nombroj kun multaj divizoroj:
Abunda nombro
Alte abunda nombro
Superabunda nombro
Kolose abunda nombro
Altkomponita nombro
Supera altkomponita nombro
Aliaj:
Manka nombro
Bizara nombro
Amikaj nombroj
Kompleza nombro
Societema nombro
Nura nombro
Sublima nombro
Harmondivizora nombro
Malluksa nombro
Egalcifera nombro
Ekstravaganca nombro
Vidu ankaŭ:
Divizora funkcio
Divizoro
Prima faktoro
Faktorado

kie σ(n) estas la dividanta funkcio (la sumo de ĉiuj pozitivaj divizoroj de n). Nombro estas perfekta se kaj nur se ĝi estas 1-hiperperfekta.

Ekvivalente por k-hiperperfekta nombro:

σ(n)=(n-1+k(n+1))/k

La unuaj kelkaj nombroj en la vico de k-hiperperfektaj nombroj estas 6, 21, 28, 301, 325, 496, ... , kaj la respektivaj valoroj de k estas 1, 2, 1, 6, 3, 1, 12, ... . La unua kelkaj k-hiperperfektaj nombroj kiuj ne estas perfektaj estas 21, 301, 325, 697, 1333, ... .

Remove ads

Listo de hiperperfektaj nombroj

Jeno estas tabelo kun la unuaj kelkaj k-hiperperfektaj nombroj por iuj valoroj de k, kaj ankaŭ la eksteraj ligiloj al la respektivaj listoj:

Pliaj informoj k, Eksteraj ligiloj ...

Se k > 1 estas nepara entjero kaj p=(3k+1)/2 kaj q=3k+4 estas primoj tiam p2q estas k-hiperperfekta; Judson S. McCraine konjektis en 2000 ke ĉiuj k-hiperperfektaj nombroj por nepara k>1 estas de ĉi tiu formo, sed la hipotezo ne estas pruvita. Plue, estas pruvitea ke se p≠q estas neparaj primoj kaj k estas entjero tia ke k(p+q)=pq-1, tiam pq estas k-hiperperfekta.

Se k>0 kaj p=k+1 estas primo, tiam por ĉiuj i>1 tiaj ke q=pi-p+1 estas primo, n=pi-1q estas k-hiperperfekta. Jen estas, tabelo de listoj de sciataj valoroj de k kaj respektiva) valoroj de i por kiuj n estas k-hiperperfekta:

Pliaj informoj k, Eksteraj ligiloj ...

Eksteraj ligiloj

Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads