Rádiólokátor
From Wikipedia, the free encyclopedia
Remove ads
A rádiólokátor, rövidebben radar (radio detection and ranging, magyarul rádióérzékelés és távmérés) olyan berendezés, mely az általa kisugárzott rádióhullámok (3 MHz – 110 GHz frekvencia, 100 m – 2,7 mm hullámhossz) visszaverődésének érzékelése alapján különféle tárgyak helyét tudja megállapítani. Elterjedten alkalmazzák a repülésben, a hajózásban, a haditechnikában, a meteorológiában, valamint számos más területen. Az adó és a vevő jellemzően, de nem mindig, egy berendezésbe van építve.




Az első rádiólokátorokat az 1930-as években kezdték rendszerbe állítani, a második világháborúban már elterjedten alkalmazták, elsősorban a légvédelmi feladatokra, főleg Angliában és Németországban. Magyarországon a háború alatt Bay Zoltán az Egyesült Izzóban fejlesztett rádiólokátort, ennek segítségével 1944-ben már képes volt hatékonyan észlelni az ellenséges repülőgépeket,[1] 1946-ban, alig egy hónappal egy amerikai kutatócsoport után (de sokkal nehezebb körülmények között dolgozva), a világon másodikként sikerült a Holdról visszaverődést érzékelnie.
Remove ads
A radarok funkció szerinti csoportosítása
- Felderítőradar
- Meteorológiai radar
- Térképező radar
- Távolságmérő radar
- Magasságmérő radar
- Sebességmérő radar
A „tolatóradar” helytelen kifejezés, ugyanis ez az eszköz nem rádióhullámmal, hanem ultrahanggal működik.
Hullámsávok
Az elektromágneses hullámok spektruma 10 24 Hz-ig terjed. Ez a nagyon nagy tartomány a különböző fizikai tulajdonságok miatt különböző altartományokra oszlik. A frekvenciák különböző tartományokra való felosztását korábban történelmileg kialakult és mára elavult kritériumok szerint mérték, így a frekvenciasávok új osztályozása jött létre. Ezt az új osztályozást nemzetközileg még nem sikerült teljesen kialakítani. A hagyományos frekvenciasáv-megjelölést még mindig gyakran használják a szakirodalomban. A NATO-ban az új felosztást használják.
Ezért jelenleg két érvényes frekvenciasáv-kijelölési rendszer létezik. Az IEEE azt a kijelölési rendszert részesíti előnyben, amely történelmileg keletkezett, és amelynek szándékosan rendszertelen elosztása a sávmegjelöléshez részben a 2. világháború idejéből származik. Kiválasztása eredetileg a használt frekvenciák titokban tartására irányult.[2]
A NATO -n belül egy újabb frekvenciasáv-besorolást alkalmaznak . Sávhatárai a különböző frekvenciatartományokban a technológiákhoz és mérési lehetőségekhez igazodnak. Szinte logaritmikus eloszlásúak, és a rendszer nyitott a magas frekvenciákra. Ebben a rendszerben a jövőben könnyen meghatározhatók további frekvenciasávok a terahertz tartományig. Ez a jelölési rendszer is katonai eredetű, és az elektronikus hadviselés sávfelosztása is egyben, amelyben végre lényeges helyet foglalnak el a radarberendezések.
Remove ads
Radaregyenlet
A vevőantennára visszaérkező teljesítményt (Pr) a radaregyenlet adja meg:[5]
ahol
- Pt = kisugárzott teljesítmény
- Gt = az adóantenna nyeresége (gain)[6]
- Ar = a vevőantenna effektív apertúrája (felülete)
- σ = a cél radarkeresztmetszete (szórási együtthatója)
- F = terjedési tényező
- Rt = az adó és a cél távolsága
- Rr = a vevő és a cél távolsága
Abban az esetben ha az adó és a vevő (közös) ugyanott található, Rt = Rr és a Rt² Rr² kifejezés helyettesíthető R4-nel, ahol R a távolság.
Így az eredmény:
Ez azt mutatja, hogy a visszaérkező jel a távolság negyedik hatványával csökken, ami azt jelenti, hogy a visszavert teljesítmény távoli tárgyak (célok) esetében nagyon-nagyon kis értékű lesz.
A fenti egyenlet F = 1 egyszerűsítése vákuumra vonatkozik, ahol nincs interferencia. A terjedési tényező szolgál magyarázatul a többutas terjedésre, az árnyékolásra és függ a környezet minden egyes részletétől. A valóságban a Path veszteségeket (pathloss) hatásokat is figyelembe kell venni.
Remove ads
A radar és a szonár közötti különbség
Míg a radar rádióhullámok (3 MHz – 110 GHz frekvencia, 100 m – 2,7 mm hullámhossz) visszaverődésének érzékelése alapján működik, addig a szonár hanghullámokat alkalmaz.
Az első lokátorok Magyarországon
A magyar hadvezetés 1942-ben felállította a Bay-csoportot, amely német technikával és saját fejlesztésű eszközökkel vette ki a részét az ország légvédelméből.[7] Német részről a Freya és a Würzburg-Riese lokátorokat használták, Magyarország a Tungsram által gyártott adócsöveket szállította.[8] Az Amerikai Egyesült Államokban ekkor fejlesztették a reflex-klisztront és a magnetront, amelyek a centiméteres hullámok tartományában is képesek voltak működni. A magyar adócsövek triódák voltak, és az egy méternél rövidebb hullámhosszak tartományában voltak üzemképesek. A Hold-radar kísérlet idején például az 55 cm-es hullámhosszon működő eszköz volt sikeres (kb. 540 MHz).
Az elsőként kifejlesztett EC 103 15-20 W teljesítményre volt képes (impulzus üzemben 1-2 kW-ra). 1943-ban már a Dunán haladó uszályokat képesek voltak észlelni vele. Az EC 108 impulzus üzemben 10 kW teljesítményre volt képes. Ekkor a magyar rádiólokátor már az Alpok hegyeit is észlelte. Első felállítási helye – a János-hegy – nem volt alkalmas, ekkor Sári mellé települtek át. Második lokátoruk Jászkiséren vadászrepülő-felderítőként üzemelt. A magyar rádiólokátor hatóköre nagyobb volt 60 kilométernél.[9] A Bay-csoport legfontosabb munkatársai ekkor Papp György, Simonyi Károly, Winter Ernő, Budincsevits Andor, Dallos György voltak. Ebben a körben ismertette a Hold-radarvisszahang ötletét Bay még 1944 márciusában. A nyilas hatalomátvétel után a termelést leállították; a gépeket és a munkatársakat nyugatra szállították. 1944 telén a dunai jeges ár is elpusztította a maradék berendezéseket. Szerencsére a radarkísérleti munkákhoz szükséges eszközök a gyár kutatólaboratóriumában voltak.
Az első elektroncsövek Rimlock foglalattal, rács- és anódsapkával készültek (a rácsfeszültség is elérte a 2000 V-ot). Ekkor alkalmaztak első ízben tórium-oxidos katódot (oxikatód). A Hold radar kísérlethez használt OQQ 500/3000 elektroncső[10] kosaras foglalattal készült.
A fejlesztések a Váci úti kísérleti laboratóriumban folytak, nem minden nehézség nélkül. 1944. július 3-án a gyárudvaron felsorakoztatták a még ott dolgozó 400 zsidó származású dolgozót, akiket a Józsefvárosi pályaudvarra hurcoltak. Bay és Jankovich a német adócső-programra hivatkozva annyit tudott elérni, hogy 13 mérnököt visszatarthattak. Közülük is kettő lemaradt a névjegyzékből (Viola Gyula és Kentzler Ödön). Ők tovább dolgozhattak az adócső programon; azonban a névsorolvasásnál mások nevét használva azonosították magukat. Erről az életmentő trükkről Bay Zoltánon kívül gyakorlatilag senki sem tudott.[11]
A gyárnak azt a részét, amely a háború után még megmaradt, másodszor is sikerült megmenteni. Bay közbenjárására szovjet adócsöveket kezdtek gyártani; sajnos, nem sokáig. A Hold-radar-kísérlet idejére ezeket a gépeket is elszállították, és ekkor valóban csak a kísérleti üzem maradt meg.
A háború után Bay kijutott Amerikába, és ott ismerte meg a John H. De Witt ezredes által alkalmazott magnetront, amellyel ott is sikeres Hold-visszhang kísérletet végeztek, de a centiméteres hullámhosszak tartományában. DeWitt további előnyben volt Bayjal szemben; az amerikaiaknak ugyanis volt kristályoszcillátoruk.[12]
A lokátor fejlesztésének munkatársai
Maga Bay Zoltán a Műszaki Egyetemről került át az Egyesült Izzóhoz. Munkatársai a Műegyetem és az ELTE oktatói, fizikusok és mérnökök voltak:[13]
Adókészülék a mikrohullámú rezgőkörökkel | Szepesi Zoltán |
Impulzusgenerátor | Papp György, Sólyi Antal, Magó Kálmán |
Adócső és a keverő diódák | Winter Ernő, Budencsevits Andor |
Vevőkészülék | Dallos György |
Katódsugárcső áramkörei | Papp György, Magó Kálmán |
Parabolikus reflektor és az iránymérés | Simonyi Károly |
Remove ads
Jegyzetek
Kapcsolódó szócikkek
Források
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads