상위 질문
타임라인
채팅
관점

내적 공간

위키백과, 무료 백과사전

내적 공간
Remove ads

선형대수학함수해석학에서 내적 공간(內積空間, 영어: inner product space)은 두 벡터의 쌍에 스칼라를 대응시키는 일종의 함수가 주어진 벡터 공간이다. 내적 공간 위에서는 벡터의 길이각도 등의 개념을 다룰 수 있다. 스칼라곱을 갖춘 유클리드 공간의 일반화이다.

Thumb
내적을 사용하여 정의한, 두 벡터 사이의 각도의 기하학적 해석

정의

요약
관점

실수체 또는 복소수체라고 하자.

-벡터 공간 위의 내적(內積, 영어: inner product)은 양의 정부호 에르미트 반쌍선형 형식이다. (실수의 경우 이는 양의 정부호 대칭 쌍선형 형식과 같다.) 즉, 다음 조건들을 만족시키는 함수

이다.

  • (양의 정부호성) 임의의 에 대하여,
  • (에르미트성) 임의의 에 대하여,
  • (왼쪽 선형성) 임의의 에 대하여,

이들 성질로부터 내적의 다음과 같은 성질을 유도할 수 있다.

  • (오른쪽 반쌍선형성) 임의의 에 대하여,

내적이 주어진 -벡터 공간 -내적 공간이라고 한다. 특히 인 경우, 즉 복소수체 위의 내적 공간은 유니터리 공간(영어: unitary space)이라고 부르기도 한다.

Remove ads

성질

요약
관점

노름 구조

-내적 공간 위에 자연스러운 -노름 공간 구조를 다음과 같이 줄 수 있다.

증명:

노름의 양의 정부호성과 양의 동차성은 내적의 정의에 따라 자명하다. 노름의 삼각 부등식코시-슈바르츠 부등식의 따름정리이며, 그 증명은 다음과 같다. 임의의 벡터 에 대하여,

이므로,

반대로, -노름 공간-내적 공간으로부터 유도될 필요충분조건은 평행 사변형 법칙

이다. 이 경우, 가능한 유일한 내적은 다음과 같으며, 이를 극화 항등식(極化恒等式, 영어: polarization identity)이라고 한다.

증명:

실수 내적 공간의 경우만을 증명하자. 극화 항등식이 정의한 내적이 다음 네 가지를 보이는 것으로 족하다.

첫째와 둘째 조건은 자명하다. 셋째 조건은 다음과 같이 증명된다.

넷째 조건의 의 경우는 다음과 같이 증명된다.

또한, 일 경우의 증명은 다음과 같다.

만약 일 경우, ()이라고 하자. 그렇다면, 다음과 같이 증명된다.

마지막으로, 일 경우는 를 고정하였을 때 가 연속 함수임에 따라 성립한다.

코시-슈바르츠 부등식

내적 공간 의 벡터 에 대하여, 다음과 같은 부등식이 성립하며, 이를 코시-슈바르츠 부등식이라고 한다.

이에 따라, 두 벡터 사이의 각도를 다음과 같이 정의할 수 있다.

또한, 내적이 유도하는 노름의 삼각 부등식은 코시-슈바르츠 부등식을 통해 증명된다.

정규 직교 기저

내적 공간 정규 직교 기저(正規直交基底, 영어: orthonormal basis)는 서로 다른 두 벡터의 내적이 항상 0인 단위 벡터들이 이루는 기저이다. 즉, 이는 다음 조건들을 만족시키는 기저 이다.

  • (직교성) 만약 이며 라면,
  • (정규성) 임의의 에 대하여,

유한 차원 내적 공간의 정규 직교 기저는 항상 존재한다. 이는 그람-슈미트 과정을 통해 구성할 수 있다.

내적 공간 의 벡터 의 정규 직교 기저 에 대한 좌표는 다음과 같다.

또한, 이 좌표 아래 내적을 다음과 같이 나타낼 수 있다.

내적 공간 속의 유한 정규 직교 집합 및 벡터 에 대하여, 베셀 부등식과 유사한 꼴의 다음과 같은 부등식이 성립한다.

선형 범함수

유한 차원 내적 공간 의 모든 선형 범함수는 어떤 유일한 고정된 벡터 와의 내적

이다. 구체적으로, 정규 직교 기저 가 주어졌을 때, 선형 범함수 를 나타내는 벡터는 다음과 같다.

이에 따라, 유한 차원 내적 공간의 선형 변환 수반 선형 변환 은 다음과 같이 항상 존재한다.

그러나 무한 차원 내적 공간의 경우 일반적으로 성립하지 않는다. 예를 들어, 다항식환 에 다음과 같은 내적을 정의할 수 있다.

이 경우, 임의의 가 주어졌을 때, 다음과 같은 선형 범함수는 고정된 벡터와의 내적으로 나타낼 수 없다.

또한 미분 선형 변환

의 수반 선형 변환은 존재하지 않는다.

Remove ads

요약
관점

유한 차원 벡터 공간 위의 내적

차원 -벡터 공간 위의 표준적인 내적은 다음과 같다.

일 때, 유클리드 공간이며, 이 내적은 스칼라곱이라고 부른다. 이 경우 실수의 켤레 복소수는 스스로와 일치한다 (). 이 내적이 유도하는 노름은 L2 노름이다. 그러나 의 경우, Lp 노름은 평행 사변형 법칙을 만족시키지 않으므로 내적으로부터 유도될 수 없다.

특히, 인 경우 는 1차원 벡터 공간이며, 위 내적은 단순히

이다.

마찬가지로, 실수 또는 복소수 성분 행렬들의 집합 차원 벡터 공간을 이룬다. 이 위에 다음과 같은 내적을 정의할 수 있다.

이를 프로베니우스 내적이라고 한다.

보다 일반적으로, 양의 정부호 행렬 에 대하여, 위에 다음과 같은 내적을 정의할 수 있다.

함수 공간

연속 함수의 공간 에는 다음과 같은 내적을 정의할 수 있다.

여기서 우변의 적분은 리만 적분이다. 또한, 다음과 같은 내적을 정의할 수도 있다.

가측 함수 들의 (거의 어디서나 같음에 대한) 동치류들로 구성된 -벡터 공간 위에 다음과 같은 내적을 정의할 수 있다.

여기서 우변은 르베그 적분이다. 이를 L2 공간이라고 한다. 특히, 확률 공간일 때, 확률 변수들의 동치류들로 이루어지며, 적분은 기댓값이다. 따라서, 두 확률 변수 의 내적은 다음과 같다.

가측 함수나 확률 변수의 동치류를 취하는 것은 내적을 양의 정부호적이게 만들기 위함이다. 예를 들어, 필요충분조건거의 확실하게 인 것이다 (). 따라서, 스스로와의 내적이 0인 경우가 0밖에 없으려면 거의 어디서나 같은 함수들을 하나의 동치류로 뭉뚱그려야 한다.

Remove ads

같이 보기

참고 문헌

외부 링크

Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads