상위 질문
타임라인
채팅
관점

자유 대상

위키백과, 무료 백과사전

Remove ads

범주론추상대수학에서 자유 대상(自由對象, 영어: free object)은 망각 함자왼쪽 수반 함자이다. 대략, 주어진 범주 속에서 특별한 제약을 가하지 않고 생성되는 가장 일반적인 대상으로 생각할 수 있다.

정의

요약
관점

구체적 범주 가 주어졌다고 하고, 망각 함자 왼쪽 수반 함자

가 존재한다고 하자. 이 경우, 집합 로부터 생성되는, 속의 자유 대상에 대한 이다. 이 경우, 수반 함자의 정의에 따라 표준적 함수 가 존재하는데, 이를 표준적 단사 함수(영어: canonical injection)라고 한다.

구성

대수 구조 다양체의 범주 의 망각 함자는 항상 왼쪽 수반 함자를 가지며, 따라서 항상 자유 대상을 갖는다. 이를 자유 대수(영어: free algebra) 또는 항 대수(영어: term algebra)라고 한다.

구체적으로 이는 다음과 같이 정의된다. 대수 구조 다양체 의 연산들이 이며, 그 항수가 라고 하자. 또한, 에서 성립하는 대수적 관계들이 라고 하자. 또한, 임의의 집합 가 주어졌다고 하자. 그렇다면, 다음과 같은 일련의 집합들을 정의할 수 있다.

로 표기하자. 대수 구조 연산을 번 이하 적용하여 적을 수 있는 모든 항들의 집합이다. 그렇다면, 이들의 합집합

를 정의할 수 있다. 이는 대수 구조 연산을 유한번 적용하여 적을 수 있는 모든 항들의 집합이다.

를 정의하는 대수적 관계들은 위의 동치 관계 로 생각할 수 있다. (즉, 대수적 관계에서 등장하는 변수들을 의 임의의 원소들로 치환한다.) 그렇다면, 로부터 생성되는 자유 대수 몫집합 이다. 이 위의 대수 연산은 다음과 같다.

여기서 은 동치 관계 에 대한 동치류이다.

Remove ads

요약
관점

대수 구조 다양체에서의 자유 대상은 다음이 있다.

대수 구조 다양체가 아닌 구체적 범주의 경우, 다음과 같은 예가 있다.

Remove ads

외부 링크

같이 보기

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads