상위 질문
타임라인
채팅
관점

준마팅게일

위키백과, 무료 백과사전

Remove ads

확률론에서 준마팅게일(準martingale, 영어: semimartingale)은 국소 마팅게일과 유계 변동 확률 과정의 합이다. 준마팅게일 조건은 이토 적분이 잘 정의될 필요 충분 조건이다.

정의

요약
관점

실수 값의 준마팅게일

다음이 주어졌다고 하자.

  • 여과 확률 공간

그렇다면, 위의 마팅게일의 개념을 정의할 수 있다. 이는 순응 확률 과정의 일종이다.

위의 과정 에 대하여, 만약 어떤 정지 시간의 열

이 다음 두 조건을 만족시킨다면, 이를 국소 마팅게일이라고 한다.

  • 거의 확실하게 이다.
  • 모든 에 대하여, 정지화 마팅게일이다.

순응 확률 과정 이 다음과 같은 꼴을 갖는다면, 준마팅게일이라고 한다.

  • 어떤 국소 마팅게일 거의 확실하게 국소 유계 변동 함수이자 카들라그 함수인 확률 과정 의 합 으로 표현될 수 있다. (즉, 임의의 에 대하여, 거의 확실하게 유계 변동 함수이다.)

다양체 값의 준마팅게일

임의의 매끄러운 다양체 이 주어졌다고 하자. 값의 확률 과정

이 주어졌다고 하자. 만약 임의의 매끄러운 함수 에 대하여 가 준마팅게일이라면, 준마팅게일이라고 한다.

Remove ads

성질

임의의 전단사 증가 함수

가 주어졌다고 하자. 만약 가 준마팅게일이라면, 역시 준마팅게일이다.

준마팅게일의 임의의 정지 시간에 대한 정지화 역시 준마팅게일이다.

준마팅게일의 합과 곱 역시 준마팅게일이다. 보다 일반적으로, 준마팅게일의 함수에 대한 값은 준마팅게일이다.

Remove ads

요약
관점

위너 확률 과정 에 대하여, 정지 시간

을 생각하자. 그렇다면,

를 생각하자. 이는 거의 확실하게 연속 함수이지만, 에서 마팅게일이 아니다. 그러나 이는 국소 마팅게일이며, 따라서 준마팅게일이다.

외부 링크

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads