Дијагонала

From Wikipedia, the free encyclopedia

Дијагонала
Remove ads

Дијагонала права линија што поврзува несоседни агли на многуаголник или полиедар.

Thumb
Дијагонали на коцка. AC' (сино) е просторна дијагонала со должина , а AC (црвено) е странична дијагонала со должина .

Покрај геометриското значење, дијагоналата се среќава и кај матриците, каде означува низа елементи долж дијагонална линија.

Thumb
Дијагонали на неправилен шестаголник
Remove ads

Многуаголници

Кај еден многуаголник, дијагонала е отсечка која сврзува две несоседни темиња. Четириаголникот има две дијагонали, кои ги сврзуваат спротивните темиња.[1] Кај секој испакнат многуаголник, сите дијагонали лежат во многуаголникот, но кај вдлабнатиот (конкавен) многуаголник, некои дијагонали ќе лежат вон многуаголникот.[2]

Секој многуаголник со n страни (n ≥ 3), било испакнат или вдлабнат, има

дијагонали, бидејќи секое теме има дијагонали што се протегаат до сите други темиња освен самото себе и двете соседни темиња, па затоа има n  3 дијагонали.

Повеќе информации Страни, Дијагонали ...
Remove ads

Матрици

Кај квадратните матрици „главната дијагонала“ ја образуваат елементите што се протегаат од горниот лев до долниот десен агол. Кај матрица со показател на ред и показател на колона , ова ќе бидат елементите со . На пример, идентичната матрица може е онаа што има елементи 1 на главната дијагонала, а нули на сите други места:[3]

Дијагоналата што се протега од горниот десен до долниот лев агол е „споредна“ или „антидијагонала“. „Вондијагоналните“ елементи се сите оние што не лежат на главната дијагонала. „Дијагонална матрица“ е онаа каде сите елементи вон дијагоналата се нули.

„Наддијагоналнен“ елемент е оној што се наоѓа неопсредно над и десно од главната дијагонала. Just as diagonal entries are those with , the superdiagonal entries are those with . For example, the non-zero entries of the following matrix all lie in the superdiagonal:

Likewise, „поддијагонален“ елемент е оној што се наоѓа веднаш под и лево од главната дијагонала, т.е. елемент with . Општите дијагонали на матрицата се означуваат со показателот со величините во однос на главната дијагонал: главната дијагонала има ; наддијагоналата има ; поддијагоналата има ; а, општо земено, -дијагоналата се состои од елементите со .

Remove ads

Геометрија

По аналогија, подмножеството на Декартовиот производ X×X на секое множество X со самото себе, кое се состои од сите парови (x,x), се нарекува дијагонала, и претставува графот на идентичната релација. Ова игра важна улога во геоемтријата; на пример, неподвижните точки на пресликувањето F од X сама на себе се добиваат со пресек на графот F со дијагоналата.

Поврзано

Наводи

Надворешни врски

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads