Интегрирање со смена на променливата

From Wikipedia, the free encyclopedia

Remove ads

Интегрирање со смена на променливата, во математиката т.е. интегралното сметање еден од основните методи за решавање на интеграли. Ова правило допушта, т.е. ги дава потребните услови под кои, слично како кај лимес на функција, може да се изврши смена на променливата во определен интеграл. Заедно со методот на интегрирање по делови, овој метод е едно од двете најнужни тврдења кои треба да се познаваат при решавањето на интегралите.

Remove ads

Формална дефиниција

Нека е интервал и нека е дефинирана непрекината функција: и нека е непрекинато-диференцијабилна функција на интервалот . Тогаш важи следново равенство:

Ќе го докажеме тврдењето:

Нека се исполнети условите и нека е примитивна за на , т.е. . Тогаш пак функцијата е примитивна за бидејќи

Тогаш според формилата на Њутн-Лајбниц имаме:

Remove ads

Пример

  • Да се пресмета интегралот:

Ќе ја воведеме смената: . Следствено имаме: и за смената на границите: и

Сега „настапува“ смената. Еве што всушност правиме:

Thumb

односно добиваме:

Поврзано

Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads