Нормалност (математика)

From Wikipedia, the free encyclopedia

Нормалност (математика)
Remove ads

Во геометријата, две прави во рамнина се (меѓусебно) нормални ако се сечат под прав агол, т.е. под агол со 90°.[1] Оваа дефиниција има два дела: (а) нормални прави се сечат и (б) четирите агли кои се формираат со пресекот се по 90°.

  • Две отсечки во рамнина се нормални ако правите на кои лежат отсечките се нормални. На истиот начин се дефинира нормалност на сите комбинации на права, полуправа и отсечка.[2]
  • При цртање, за да се означи дека две прави се нормални се црта симбол за прав агол кај пресекот на двете прави. Во РМ се користи мал лак со точка, а друго означување е со мало квадратче.[3].
Thumb Thumb Thumb Thumb Thumb
Нормални прави. Нормални прави
формираат 4 прави агли.
Нормални отсечки. Означување на прав агол (нормалност).
Remove ads

Означување

Симбол за нормалност е   . На пример, значи дека правите AB и CD се нормални. Симболот се совпаѓа со Буловиот симбол за невистинит, но контекстот е сосема различен така што не се мешаат.

  • Нормалност како паралелност е симетрична особина, односно    е еквивалентно со   , па затоа едноставно велиме дека AB и CD се нормални.
  • За разлика од паралелност, нормалност не е транзитивна особина. На против, ако    и    тогаш    .

Во уникод, симболот за нормалност на вашиот тековен прелистувач се прикажува со и е уникод бројот 8869. Соодветните хексадецимален број се 22а5. На мрежно место, т.е. во ХТМЛ се внесува ⊥ или &#x22а5;.[4] За внесување на уникод симболи во текст уредувачи на Microsoft се внесува хексадецималниот код, па веднаш потоа се притиска Alt+x.[5] Во уникод има и симболи ⊾ () и ∟ ().

Во LaTeX, симболот     за нормалност се добиваат со командата \perp која е дел од пакетот wasysym.

Во Геогебра, симбол при цртање на прав агол се менува во Опции -> Напредно -> Ознака за прав агол, па се избере точка.

Remove ads

Нормални прави и наклон

Во алгебра, права во рамнина има наклон, односно број кој го опишува правецот и стрмноста на правата. Ако е дадена правата во експлицитен облик y=ax+b, тогаш коефициентот a на x е наклонот на правата.

Основна поставка: Две прави се нормални ако и само ако производот на нивните наклони е -1.[6]

Пример: Правите y= -3x+2 и y =x/3+2 се нормални бидејќи наклонот на првата права е a1= -3, а наклонот на втората права е a2=1/3 така што a1·a2= -3·1/3 = -1.

Пример: Правите 2x-y+3=0 и x-2y-1=0 не се нормални бидејќи производот на нивните наклони е 2·1/2=1 (а не -1).

  • Две прави се нормални само ако едната има позитивен наклон, а другата има негативен наклон.
  • Ако правата m е нормална на правата n, a правата n е нормална на правата p, тогаш правите m и p или се паралелни или се совпаѓаат (т.е. наклоните им се исти).
Доказ: Нека наклон на m e a. Од нормалноста на m и n, наклонот на n е -1/a. Од нормалноста на n и p, наклонот на p е
.
Remove ads

Нормала на права низ точка во рамнина

Thumb
Конструкција на нормала на права низ точка која не лежи на правата со Геогебра. Види и навода![7]

Конструкција со шестар и линијар

Една од основните конструкции со шестар и линијар е конструкција на права нормална со дадена права m која минува низ дадена точка C која лежи/не лежи на m.[8]

  1. Со линијар нацртај права и точка која не лежи на правата (види наводи за точка на права).
  2. Означи ја точката со буквата С.
  3. Доколку нема, означи две посебни точки А и В на правата (релативно блиски една до друга и до точката С).
  4. Со шестар нацртај една кружница со полупречник АС и центар А.
  5. Со шестар нацртај друга кружница со полупречник ВС и центар В.
  6. Означи ја другата пресечна точка D на двете кружници (едната пресечна точка е С).
  7. Нацртај ја правата CD која минува низ двете пресечни точки.

Правата CD врви низ С и е нормална на правата АВ.

Алгебарска равенка

Нека е дадена точка C со координати С=(p,q) и права

Равенката на права која минува низ С(p,q) и е нормална на дадената права е

Доказ: Наклонот на дадената права е a. Според основната поставка, наклонот на (која било) нормала е −1/a. Значи бараната нормала го има тој наклон, а минува низ точката (p,q). (Види и Формули за равенка на права.)

Пример: Равенката на нормалата на правата y=3x+2 која минува низ точката (-1,-1) е: y=-x/3-4/3.

Нормала и растојание

Нормали се користат за пресметување на растојание помеѓу геометриски објекти.

Растојание помеѓу точка и права во рамнина

За да се пресмета растојание помеѓу точка C=(p,q) и права m, најпрво треба да се најде равенката на правата n која е нормална на правата m, а минува низ точката C. Потоа треба да се најдат координатите на прeсечната точка D на правите n и m. Тогаш растојанието помеѓу С и m е растојанието помеѓу точките С и D.

Пример: Нека точката C=(-4,2), a правата m нека е дадена експлицитно y=x/2-1. Тогаш наклонот на правата m e ½, така што наклонот на нормалата n е

со што равенката на n e

Пресекот на правите m и n е решение на систем линеарни равенки

Решението е D(-2,-2). Растојанието помеѓу точките С и D е

Следува дека растојанието помеѓу точката С и правата m е 4,47

Растојание помеѓу две паралелни прави во рамнина

Види паралелни прави

Растојание во 3Д простор

Види аналитичка геометрија

Remove ads

Нормали на крива

Во математичката дисциплина калкулус (диференцијално сметање) е дефиниран поимот извод. Да претпоставиме дека y=f(x) е реална функција од една реална променлива и е диференцијабилна во точката xo и дека вредноста на функцијата во таа точка е yo=f(xo), а вредноста на изводот во таа точка е y'o=y'(xo).

Тогаш равенката на тангентата на функцијата во таа точка е

а равенката на нормалата на функцијата во таа точка е[9]

Remove ads

Нормалност и вектори

Основна поставка: Во аналитичка геометрија, два полупречнички вектори се нормални ако и само ако нивниот скаларен производ е 0. (Види и аналитичка геометрија.)

Нормалност во 3Д простор

  • Во 3-димензионален простор, права и рамнина се нормални ако правата и рамнината се сечат во една точка А и правата е нормална со секоја права од рамнината која минува низ А.

Права зададена во параметарски (векторски, вектор-параметарски) облик е

 ,  

Рамнина зададена во општ облик е

Поставка: Правата и рамнината се нормални ако полупречничките вектори <a,b,c> и <A,B,C> се колинеарни (линеарно зависни), односно ако

Формула: Равенка на рамнина која е нормална со полупречник-векторот <a,b,c>, а врви низ точката C(xo,yo,zo) e

  • Во 3-димензионален простор, две рамнини се нормални ако нивниот просторен агол е прав агол. Види и аналитичка геометрија.

Нека се дадени две рамнини во општ облик, односно

Поставка: Рамнините се нормални ако полупречничките вектори <A,B,C> и <A1,B1,C1> се нормални, односно ако нивниот скаларен производ е 0.

Remove ads

Обопштување

Нормалност како поим во елементарна геометрија се обопштува во поимот ортогоналност во класична математика.

Наводи

Поврзано

Loading content...

Надворешни врски

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads