Top Qs
Tijdlijn
Chat
Perspectief

Dimetrodon

geslacht uit de familie Sphenacodontidae Van Wikipedia, de vrije encyclopedie

Dimetrodon
Remove ads

Dimetrodon[1][2] is een geslacht van uitgestorven synapsiden. Dimetrodon behoorde tot de familie Sphenacodontidae.

Snelle feiten Taxonomische indeling, Geslacht ...

Alle soorten waren carnivore landbewoners die leefden in het Vroeg-Perm (290 tot 270 miljoen jaar geleden). Fossielen zijn bekend uit de Verenigde Staten, Canada en Duitsland.[3] Door klimaatverandering veranderde de leefomgeving van Dimetrodon dusdanig dat het geslacht uitstierf.

Er zijn verschillende Dimetrodon beschreven, die een vergelijkbare lichaamsbouw hebben. Dimetrodon werd ongeveer twee tot drie meter lang en had een gedrongen, hagedisachtig lichaam met kleine poten. Een karakteristiek kenmerk van Dimetrodon was het grote, opstaande rugzeil, dat bestond uit huid en versterkt was met lange, ribachtige uitsteeksels van de wervelkolom. De wetenschappelijke naam Dimetrodon slaat op de tanden van de dieren en is Grieks voor twee (di) maten tanden (metrodon).

Remove ads

Uiterlijke kenmerken

Samenvatten
Perspectief
Meer informatie Soort, Geschat gewicht (kg) ...

Dimetrodon was een van de grootste landdieren van zijn tijd. De verschillende soorten varieerden in lengte van 90 tot 400 centimeter en in gewicht van 14 tot 300 kilogram.

Schedel

Thumb
Schedel van Dimetrodon

Een ander kenmerk zijn de twee typen tanden, zware hoektanden en grote scheurtanden, die Dimetrodon zijn naam gaven. Dimetrodon was een van de eerste dieren met een gedifferentieerd gebit en de tanden waren geschikt om dieren mee te doden en vervolgens in stukken te scheuren. Bij latere soorten ontwikkelden zich ziphodonte tanden. Deze zijdelings afgeplatte, scherpe tanden met gezaagde randen kwamen ook bij verschillende latere carnivore reptielen voor, maar Dimetrodon was de eerste tetrapode met dergelijke tanden. Ziphodonte tanden zorgden voor een efficiëntere beet en stelde Dimetrodon in staat prooien te eten die groter waren dan het dier zelf.[7]

Thumb
De schedel en onderkaak in zijaanzicht

Dimetrodon heeft een grote schedel met een lange hoge snuit, een kleine hooggelegen oogkas en hoge slaapvensters, hét kenmerk van de synapside schedel. De kaakspieren van Dimetrodon maakten kauwen mogelijk, waardoor de vertering sneller en efficiënter kon verlopen. Op basis van de osteologie van de temporale regio, het posterieure deel van het verhemelte en de onderkaak, is vastgesteld dat Dimetrodon krachtige, gedifferentieerde kaakspieren had. Er kunnen twee spiergroepen worden gereconstrueerd: de adductoren en de musculus pterygoideus. De adductoren liepen van temporaal naar de binnenzijde van de onderkaak en zorgden voor het sluiten van de kaken. De pterygoïdeus liep van de processus pterygoïdes op het os sphenoides naar het os angulare, bij Dimetrodon (en hedendaagse amfibieën, reptielen en vogels) een van de beenderen in de onderkaak, en zorgde voor een achterwaartse beweging van de onderkaak. De ontwikkeling van de processus coronoides bij Dimetrodon in vergelijking met andere viervoeters, zorgde voor een toename van de lengte van de momentarm van de externe kaakmusculatuur en dus meer bijtkracht.[8][9]

Zintuigen

Een studie naar de sclerale ring wijst er op dat Dimetrodon mogelijk nachtactief was. Bij vissen en reptielen zijn de sclerae versterkt met een ring van botdeeltjes. Deze sclerale ring ontbreken bij zoogdieren, maar waren wel bij het merendeel van de vroegere synapsiden aanwezig. Het aspect van de sclerale ring heeft in combinatie met de dimensies van de oogkassen een sterke correlatie met de vorm van de oogbal en de optische functies. Volgens de studie had Dimetrodon milleri net als de andere drie onderzochte eupelycosauriërs (de verwante Sphenacodon ferox en twee varanopiden) scotopisch zicht, wat betekent dat het goed kon zien bij beperkt licht. Dit wijst er op dat een nachtactieve leefwijze niet pas ontstond bij de vroege zoogdieren, maar mogelijk al ongeveer honderd miljoen jaar eerder in de evolutie van de synapsiden voorkwam. Bij de onderzochte therapsiden kwamen zowel een dag-, schemering- als nachtactieve leefwijze voor, waarbij de dicynodonten overwegend een fotopisch zicht hadden.[10] De bouw van het binnenoor en het evenwichtsorgaan van Dimetrodon werden door Case beschreven, maar hij trok geen conclusies over het mogelijke functioneren van deze organen.[11]

Poten

Voorheen werd gedacht dat de stevige poten van Dimetrodon gespreid naast het lichaam stonden en dat Dimetrodon zich voortbewoog als een hagedis. Fossiele voetsporen wijzen er echter op een looppatroon dat het meest overeenkomt met dat van de brilkaaiman, die met name bij rennen de poten verticaal genoeg kan houden om het lichaam en de staart van de grond te krijgen. De fossiele voetsporen laten een smal gangspoor zien.[12] Afgaand op de bouw van de poten was Dimetrodon een relatief snel en soepel bewegend dier, zeker in vergelijking met zijn steviger gebouwde herbivore verwanten. Uit de vorm van de heupbeenderen, de achterpoten en de gewrichten tussen de wervels kan worden opgemaakt dat de wervelkolom van Dimetrodon tijdens het lopen op en neer bewoog. De laterale flexibiliteit van de wervelkolom was beperkt.[13]

Rugzeil

Thumb
Skelet van Dimetrodon
Thumb
Twee skeletten van Dimetrodon

Het opvallendste kenmerk van Dimetrodon zijn de tot een meter lange doornuitsteeksels aan de bovenzijde van de wervelkolom, de processus spinosi, ook wel aangeduid als spinae. Deze spinae hebben een brede basis en zijn vervolgens lang en slank met een puntig uiteinde. Bij opgravingen liggen de spinae over het algemeen in een bijna hekachtige rangschikking, wat doet vermoeden dat deze werveluitsteeksels tijdens het leven onderling waren verbonden door een stevige huid en zo een zeil op de rug vormden. Bij een studie naar de doornuitsteeksels van Dimetrodon giganhomogenes bleek een deel gebroken en later genezen. Dit ondersteunt de aanwezigheid van een zeil, waardoor de botdelen na een breuk bijeen werden gehouden en zo in staat waren om te genezen. De top van de doornuitsteeksels was vaak gebogen, wat er op wijst dat deze uiteinden niet in het zeil lagen.[14] Osteohistologisch onderzoek ondersteunt dit: het onderste deel van een doornuitsteeksels heeft een ruw oppervlak en was gelegen in de rugspieren, het middendeel was bedekt met zogenoemde vezels van Sharpey in het zeil en de bovenste delen hadden een glad oppervlak en lagen buiten het zeil.[15] Voorheen werd de wervelkolom van Dimetrodon gereconstrueerd met een iets gekromde rug met een rechte nek en staart. Nader onderzoek van de wervels van Dimetrodon grandis laat een sterkere kromming zien in het verloop van de wervelkolom, waarbij deze naar beneden gekromd was in de nek en aan de achterzijde van de rug en naar boven gekromd was bij de overgang van de nek naar de rug.

Functie van het rugzeil

De rol van het rugzeil is al lang een punt van discussie. Romer veronderstelde in 1927 dat het een mechanische functie had om de wervelkolom te versterken. Vervolgens dacht hij aan camouflage bij het wachten op een prooi tussen het riet. Dan kwam hij met de hypothese dat Dimetrodon het rugzeil gebruikte om zich als een zeilschip te kunnen verplaatsen in de draslandgebieden. In 1948 kwam hij met de theorie dat het zeil diende voor thermoregulatie.[16] Deze veronderstelling werd lange tijd als juist beschouwd. In 1949 stelde Rodbard, werkzaam bij het Medical Research Institute Chicago, dat een mechanische functie niet aannemelijk zou zijn, aangezien de spinae te fragiel zijn voor een dergelijke rol en aanhechtingsplaatsen voor spieren ontbreken. Het feit dat dergelijke spinae aanwezig zijn bij zowel Dimetrodon als Edaphosaurus, twee dieren die in ongeveer dezelfde geologische periodes ontstonden en verdwenen, zou suggereren dat de spinae een significante waarde in de overleving gaven ten gevolge van omgevingsfactoren. Bij een onderzoek naar de relatie tussen lichaamstemperatuur en bloeddruk analyseerde Rodbard de evolutie van thermoregulatie, waarbij hij op de gedachte kwam dat het rugzeil van Dimetrodon en Edaphosaurus hier een mogelijke functie in had.[17] Dimetrodon en Edaphosaurus zouden heliotherm zijn geweest.[18] De spinae van Dimetrodon hebben groeven aan de basis die vermoedelijk ingenomen werden door bloedvaten tijdens het leven van het dier en zo zorgden voor een goed doorbloede huid van het rugzeil. De theorie is dat Dimetrodon in de vroege ochtend zijn zeil naar de zon richtte. Het zeil absorbeerde de zonnewarmte, waardoor de temperatuur van het bloed steeg. Het bloed circuleerde door de rest van het lichaam en verhoogde zo de lichaamstemperatuur. Hierdoor kon Dimetrodon jagen op een moment waarop andere dieren nog onvoldoende opgewarmd en daardoor traag en suf waren. Het rugzeil vergrootte het lichaamsoppervlak met vijftig procent. Volgens berekeningen door Bramwell en Fellgett in 1973 kostte het een Dimetrodon van 200 kg ongeveer anderhalf uur om zijn lichaamstemperatuur van 26 op 32 °C te brengen. Zonder de rugkam zou hetzelfde dier een drie uur durend zonnebad moeten nemen voor dezelfde temperatuurstijging.[19] Een studie van Haack uit 1986 concludeerde dat de opwarming trager verliep dan eerst gedacht en dat het proces waarschijnlijk vier uur duurde.[20] Om af te koelen richtte Dimetrodon zijn rugzeil op de wind, waardoor er warmte werd afgevoerd. De snellere opwarming met behulp van het rugzeil leverde vooral een voordeel op ten opzichte van grote dieren, met een gewicht van boven de vijfenvijftig kilogram. Kleinere dieren hadden een hogere lichaamsoppervlak-naar-massa-verhouding, waardoor ze sneller warm waren dan Dimetrodon. Het rugzeil van Dimetrodon zou dan alleen een voordeel zijn geweest bij het bejagen van grote dieren als Diadectes, Eryops en Ophiacodon. Het veranderende klimaat in de loop van het Perm, waarin de temperatuur toenam, wordt gezien als een mogelijke reden voor het uitsterven van Dimetrodon aangezien het rugzeil geen voordeel meer betekende op andere dieren en eerder een nadeel vormde door de fragiliteit.

Studies uit de eenentwintigste eeuw zetten echter kanttekeningen bij de hypothese dat het rugzeil gebruikt werd voor thermoregulatie en zien meer bewijs voor de hypothese dat het rugzeil een extreem voorbeeld is van uiterlijk vertoon, bijvoorbeeld bij de balts, als tegenhangers van de kragen en keelflappen van sommige hedendaagse hagedissen zoals anolissen. Thermoregulatie door middel van een rugzeil zou alleen bij grotere soorten effectief zijn geweest. Rugzeilen komen echter ook in meer of mindere mate voor bij de kleinere sphenacodonten en edaphosauriërs, die te klein waren om aanpassingen voor thermoregulatie te hebben. Zo leverde het rugzeil van D. teutonis geen significant voordeel op voor opwarmen of afkoelen en ook bij middelgrote soorten zoals D. milleri en D. milleri zal het rugzeil niet efficiënt geweest zijn voor thermoregulatie. Voor de bejaging van de voornaamste prooidieren van de Texaanse populaties, aquatische amfibieën en zoetwaterhaaien, bood sneller opwarmen geen duidelijk voordeel en hetzelfde geldt voor Edaphosaurus als herbivoor. Bij zowel Dimetrodon als Edaphosaurus zijn aanwijzingen dat het rugzeil een seksueel selectieve functie had. Er is sprake van seksueel dimorfisme wat betreft het rugzeil van Dimetrodon.[21] Dat het rugzeil tevens een rol had bij communicatie en uiterlijk vertoon werd eerder al verondersteld, maar de rol bij balts en pronkgedrag werd destijds als hooguit een secundaire functie beschouwd.[22]

Rugzeilen vergelijkbaar met die van Dimetrodon zijn ook aangetroffen bij de andere geslachten uit de Sphenacodontidae, hoewel de lengte sterk varieert, de verwante eupelycosauriërs Ianthasaurus en Edaphosaurus, het temnospondyle amfibie Platyhystrix, en de dinosauriërs Spinosaurus en Ouranosaurus uit het Krijt van West-Afrika, . Edaphosaurus en Platyhystrix leefden in dezelfde gebieden en dezelfde periode als Dimetrodon.

Remove ads

Leefwijze

Samenvatten
Perspectief

Dimetrodon was de apexpredator van zijn tijd. Waarschijnlijk werden vrijwel alle dieren die Dimetrodon te pakken kon krijgen gegeten, waaronder zoetwaterhaaien, amfibieën, reptielen en andere amnioten. De traditionele gedachte is dat Dimetrodon met name grote herbivoren zoals Edaphosaurus en Diadectes bejoeg. Er wordt een snelle toename in lichaamsgrootte gezien bij eerst de edaphosauriërs in het Laat-Carboon en vervolgens bij de sphenacodonten. Een hypothese voor deze ontwikkelingen bij de sphenacodonten is selectiedruk om de nieuwe grote herbivoren te kunnen bejagen. De groei remde uiteindelijk af bij de edaphosauriërs, maar de Dimetrodon-soorten werd steeds groter en uiteindelijk groter dan de grootst bekende Edaphosaurus. Mogelijk had dit te maken met de toegenomen diversiteit en voorkomen van de caseïden, waartoe enkele van de grootste landdieren van het Vroeg-Perm behoren. Door groter te worden kon Dimetrodon ook deze dieren belagen.[23] Direct bewijs ontbreekt echter voor de bejaging van grote herbivoren door Dimetrodon. Everett Claire Olson stelde al dat de Texaanse populaties van Dimetrodon voornamelijk afhankelijk waren van aquatische dieren. De grote herbivoren waren in het Vroeg-Perm nog zeldzaam en onvoldoende in aantal om in de behoefte aan vlees van Dimetrodon te voorzien. Een studie bij Craddock Ranch uit 2014 bevestigt dit laatste met een verhouding tussen grote sphenacodonten en grote herbivoren van 8,5 tegen 1.[24] Daarentegen waren fossielen van Dimetrodon in de afzettingen bij George Ranch zeer zeldzaam. Edaphosaurus was hier de algemeenste gewervelde, terwijl aquatische amfibieën en zoetwaterhaaien weinig voorkwamen. Dit ondersteunt de huidige gedachte dat Dimetrodon zich met name met aquatische prooidieren voedde.[25] De zoetwaterhaai Xenacanthus en de amfibieën Eryops, Diplocaulus en Zatrachys waren een zekere prooi. Op opperarmbeenderen van Eryops, beenderen van Diplocaulus en schedels van Xenacanthus zijn tandafdrukken gevonden die overeenkomen met de vorm van de tanden van Dimetrodon.[26] In de lichaamsholte van een Dimetrodon milleri is een skelet van het temnospondyle amfibie Zatrachys gevonden. Overigens was Dimetrodon ook een prooi voor de zoetwaterhaaien, gezien tandafdrukken van Xenacanthus op beenderen van sphenacodonten. Waarschijnlijk joeg Dimetrodon op basis van zicht en reuk. Het dier joeg te voet en vermoedelijk was Dimetrodon tevens een goede zwemmer. Tijdens droge periodes zocht Dimetrodon in de opgedroogde modder naar longvissen en aquatische amfibieën in estivatie, een zomerslaap om periodes van hitte en droogte door te komen. Meerdere schedels van opgerolde Diplocaulus in gefossileerde holen vertonen bijtwonden die zijn toegebracht door Dimetrodon.[27]

De structuur van de botten wijst op koudbloedigheid en een laag metabolisme. Er zijn slechts weinig kanaaltjes in het bot aanwezig, wat past bij een beperkte doorbloeding. Voor adequaat metabolisme had Dimetrodon daarom externe warmte nodig.[28] Het groeipatroon van Dimetrodon is onduidelijk. Analyse op basis van de lengte en ossificatie van het bovenbeen, de ellepijp en de bovenarm, toont een slechte correlatie tussen de grootte en de relatieve leeftijd van het individu.[29] Er was een verschil in leefgebied tussen de jonge dieren en de volwassen exemplaren bij Dimetrodon. De jonge dieren leefden vooral in habitats met veel beschutting, zoals moerassen en met riet begroeide oevers. De volwassen exemplaren prefereerden daarentegen het open terrein van vloedvlaktes. Dit blijkt uit onderzoek van fossielen uit de Wichita Group in Texas. De lengte van de bovenarm en het bovenbeen was de voornaamste maat die gebruikt werd voor het onderscheid tussen jonge en volwassen exemplaren en gekeken werd in welk type sediment de fossielen voorkwamen. Een vergelijkbaar verschil in verspreiding tussen jonge en volwassen exemplaren werd in de studie ook gevonden voor Ophiacodon en Eryops en is tevens bekend van hedendaagse krokodillen en waterschildpadden.[30]

Remove ads

Classificatie

Samenvatten
Perspectief

Het geslacht Dimetrodon werd in 1878 door de Amerikaanse wetenschapper Edward Drinker Cope beschreven gedurende de beruchte Bone Wars tussen hem en Othniel Charles Marsh. De typesoort is Dimetrodon incisivus. De geslachtsnaam is afgeleid van het Griekse di ('twee'), metron ('maat') en odoon ('tand'), samen een verwijzing naar het feit dat het dier tanden in twee maten had: de voorste tanden in het bovenkaaksbeen waren veel groter dan de achterste. De soortaanduiding betekent 'betrekking hebbend op de snijtand (incisor)', een verwijzing naar de grootte van de snijtanden. Het holotype, het naamdragend fossiel, is AMNH 4116.

Cope had eigenlijk al eerder een soort van Dimetrodon beschreven. In 1877 had hij namelijk Clepsydrops limbatus benoemd; pas in 1940 zouden Romer en Price deze soort aan Dimetrodon toewijzen. Dat Cope een nauwe verwantschap zag tussen Clepsydrops en Dimetrodon blijkt ook uit het feit dat hij dit laatste geslacht oorspronkelijk bij de Clepsydropidae onderbracht. Tegenwoordig is duidelijk geworden dat beide geslachten niet zeer nauw verwant zijn: Clepsydrops wordt nu gezien als een lid van de Ophiacodontidae. Ook Dimetrodon kreeg een aparte plaats: in 1925 was het volgens Franz Nopcsa lid van een eigen Dimetrodontinae; in 1973 voegde Eleanor Daly het toe aan de Sphenacodontidae.

De betekenis van deze classificatie van Dimetrodon hangt af van het gebruikte systeem. In het klassieke Linneaanse systeem behoort het geslacht tot de orde Pelycosauria. Aangezien bij deze classificatie de Therapsida en de zoogdieren traditioneel buiten de orde Pelycosauria werden geplaatst, is deze orde in feite parafyletisch: niet alle afstammelingen behoren ertoe. Niet alleen de orde als geheel is parafyletisch maar ook de familie binnen die orde waartoe de voorouder van de latere therapsiden en zoogdieren door dit systeem gerekend zou zijn. Die familie nu zijn de Sphenacodontidae waartoe Dimetrodon behoort. Door deze classificatie wordt Dimetrodon dus in een taxon verenigd met soorten die een heel verschillende positie op de stamboom hebben: sommige zijn nauwer aan hem verwant, andere nauwer aan de zoogdieren.

In het cladistische systeem worden alleen monofyletische groepen gebruikt: taxa die alle afstammelingen omvatten. De monofyletische groep waartoe Dimetrodon en diens directe verwanten Ctenospondylus, Neosaurus, Secodontosaurus, Sphenacodon en Steppesaurus behoren, wordt ter onderscheid met de oude term aangeduid als Sphenacodontidae sensu stricto: "in engere zin" want de voorouders van de therapsiden vallen erbuiten. Binnen de Sphenacodontidae is Secodontosaurus de nauwste verwant van Dimetrodon.[31] De Sphenacodontidae sensu stricto vormen samen met Tetraceratops en de Therapsida (waaronder nu de zoogdieren) de clade Sphenacodontoidea. De Sphenacodontoidea vormen samen met enkele basale (onder in de stamboom staande) vormen als Haptodus de clade Sphenacodontia. De Sphenacodontia vormen samen met de Edaphosauridae, Ophiacodontidae en Varanopidae de Eupelycosauria. In vergelijking met het Linneaanse systeem worden de pelycosauriërs uit de families Caseidae en Eothyrididae in het cladistische systeem in een eigen groep, de Caseasauria, geplaatst.[32][33][34][35]

Het volgende kladogram toont een mogelijke positie van Dimetrodon in de stamboom van de Amniota;

 Amniota 

 Sauropsida  (reptielen waaronder de vogels)

 Synapsida 

 Caseasauria 

 Ianthodon schultzei 

 Edaphosauridae 

 Sphenacodontia 

 Haptodus garnettensis 

 Pantelosaurus saxonicus 

 Sphenacodontidae 

 Cutleria wilmarthi 

 Secodontosaurus obtusidens 

 Cryptovenator hirschbergeri 

 Dimetrodon spp. 

 Sphenacodon spp. 

 Therapsida  (waaronder de zoogdieren)

Remove ads

Soorten

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads