ਸਮਤਾ
From Wikipedia, the free encyclopedia
Remove ads
ਸਮਿੱਟਰੀ (ਗ੍ਰੀਕ ਤੋਂ συμμετρία symmetria ਜਿਸਦਾ ਅਰਥ ਹੈ “ਅਯਾਮਾਂ, ਉਚਿਤ ਅਨੁਪਾਤ, ਵਿਵਸਥਾ ਵਿੱਚ ਸਹਿਮਤੀ”) ਰੋਜ਼ਾਨਾ ਜਿੰਦਗੀ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਲੈਅਬੱਧਤਾ ਪ੍ਰਤਿ ਇੱਕ ਸਮਝ ਅਤੇ ਸੁੰਦਰ ਅਨੁਪਾਤ ਅਤੇ ਸੰਤੁਲਨ ਹੁੰਦਾ ਹੈ। ਗਣਿਤ ਵਿੱਚ, ਸਮਰੂਪਤਾ ਦੀ ਪਰਿਭਾਸ਼ਾ ਹੋਰ ਸ਼ੁੱਧ ਪਰਿਭਾਸ਼ਾ ਹੁੰਦੀ ਹੈ, ਕਿ ਕੋਈ ਵਸਤੂ ਕਿਸੇ ਪਰਿਵਰਤਨ ਪ੍ਰਤਿ ਸਥਿਰ ਰਹਿੰਦੀ ਹੈ, ਜਿਵੇਂ ਰਿਫਲੈਕਸ਼ਨ ਪਰ ਹੋਰ ਪਰਿਵਰਤਨਾਂ ਸਮੇਤ ਵੀ। ਭਾਵੇਂ ਸਮਰੂਪਤਾ ਦੇ ਇਹ ਦੋ ਅਰਥ ਕਦੇ ਕਦੇ ਵੱਖਰੇ ਤੌਰ ਤੇ ਦੱਸੇ ਜਾਂਦੇ ਹਨ, ਫੇਰ ਵੀ ਇਹ ਸਬੰਧਤ ਹੁੰਦੇ ਹਨ, ਇਸਲਈ ਇਹ ਇੱਥੇ ਇਕੱਠੇ ਚਰਚਿਤ ਕੀਤੇ ਗਏ ਹਨ।





ਗਣਿਤਿਕ ਸਮਰੂਪਤਾ ਨੂੰ, ਰੇਖਾਗਣਿਤਿਕ ਪਰਿਵਰਤਨਾਂ ਜਿਵੇਂ ਸਕੇਲਿੰਗ, ਰਿਫਲੈਕਸ਼ਨ, ਅਤੇ ਰੋਟੇਸ਼ਨ ਰਾਹੀਂ; ਫੰਕਸ਼ਨਲ ਪਰਿਵਰਤਨਾਂ ਦੀਆਂ ਹੋਰ ਕਿਸਮਾਂ ਰਾਹੀਂ; ਅਤੇ ਅਮੂਰਤ ਵਸਤੂਆਂ, ਸਿਧਾਂਤਕ ਮਾਡਲਾਂ, ਭਾਸ਼ਾ, ਸੰਗੀਤ, ਅਤੇ ਇੱਥੋਂ ਤੱਕ ਕਿ ਖੁਦ ਗਿਆਨ ਰਾਹੀਂ; ਕਿਸੇ ਸਥਾਨਿਕ ਸਬੰਧ ਦੇ ਰੂਪ ਵਿੱਚ, ਵਕਤ ਦੇ ਲਾਂਘੇ ਨਾਲ ਦੇਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
ਇਹ ਆਰਟੀਕਲ ਸਮਰੂਪਤਾ ਨੂੰ ਤਿੰਨ ਦ੍ਰਿਸ਼ਟੀਕੋਣਾਂ ਤੋਂ ਦਰਸਾਉਂਦਾ ਹੈ: ਗਣਿਤ ਵਿੱਚ, ਰੇਖਾਗਣਿਤ ਸਮੇਤ, ਬਹੁਤ ਸਾਰੇ ਲੋਕਾਂ ਲਈ ਸਮਰੂਪਤਾ ਦੀ ਸਭ ਤੋਂ ਜਿਆਦਾ ਪ੍ਰਸਿੱਧ ਕਿਸਮ; ਵਿਗਿਆਨ ਅਤੇ ਕੁਦਰਤ ਵਿੱਚ; ਅਤੇ ਕਲਾ ਵਿੱਚ, ਜਿਸ ਵਿੱਚ ਆਰਕੀਟੈਕਚਰ, ਕਲਾ, ਅਤੇ ਸੰਗੀਤ ਸ਼ਾਮਿਲ ਹਨ।
ਸਮਰੂਪਤਾ ਦਾ ਉਲਟ ਅਸਮਰੂਪਤਾ ਹੁੰਦੀ ਹੈ।
Remove ads
ਗਣਿਤ ਵਿੱਚ
ਕੋਉ ਵੀ ਰੇਖਾ ਗਣਿਤ ਦੀ ਸਕਲ, ਜਾਂ ਵਸਤੂ ਵਿੱਚ ਸਮਤਾ ਹੈ ਜੇ ਇਸ ਨੂੰ ਦੋ ਜਾਂ ਦੋ ਤੋਂ ਵੱਧ ਬਰਾਬਰ ਹਿੱਸਿਆ ਵਿੱਚ ਵੰਡੀ ਜਾਵੇ
ਜੇ ਕਿਸੇ ਇੱਕ ਰੇਖਾ ਨਾਲ ਕੋਈ ਵਸਤੁ ਨੂੰ ਵੱਖ ਕਰੇ ਤੇ ਦੋਨੋਂ ਇੱਕ ਦੂਜੇ ਦਾ ਪ੍ਰਤੀਬਿੰਬ ਹੋਣ ਤਾਂ ਇਸ ਸਮਤਾ ਨੂੰ ਪ੍ਰਤੀਬਿੰਬ ਸਮਤਾ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਜੇ ਕਿਸੇ ਵਸਤੂ ਨੂੰ ਇਸ ਦੀ ਸਕਲ ਨੂੰ ਨਾ ਬਦਲ ਕੇ ਕਿਸੇ ਖ਼ਾਸ ਬਿੰਦੂ ਤੇ ਘੁਮਾਇਆ ਜਾ ਸਕਦਾ ਹੋਵੇ ਤਾਂ ਇਸ ਸਮਤਾ ਨੂੰ ਰੋਟੇਸ਼ਨਲ ਸਮਤਾ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਜੇ ਕੋਈ ਵਸਤੂ ਫੈਲਣ ਨਾਲ ਆਪਣੀ ਮੁਢਲੀ ਸ਼ਕਲ ਨਾ ਬਦਲੇ ਤਾਂ ਇਸ ਸਮਤਾ ਨੂੰ ਸਕੇਲ ਸਮਤਾ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।
ਰੇਖਾਗਣਿਤ ਵਿੱਚ
ਸਮਰੂਪ ਦੋ ਵਸਤੂਆਂ ਇਕੋ ਹੀ ਸ਼ਕਲ, ਅਕਾਰ ਦੀਆਂ ਹੋਣ ਉਸ ਨੂੰ ਸਮਰੂਪ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇੱਕ ਵਸਤੂ ਨੂੰ ਦੂਜੀ ਤੋਂ ਉਸ ਦੀਆਂ ਭੁਜਾਵਾਂ ਨੂੰ ਅਨੁਪਾਤਿਕ ਵਧਾਕੇ ਜਾਂ ਘਟਾਕੇ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਜਿਵੇਂ ਸਾਰੇ ਚੱਕਰ ਇੱਕ ਦੂਜੇ ਨੂੰ ਸਮਰੂਪ ਹੁੰਦੇ ਹਨ। ਸਾਰੀਆਂ ਸਮਬਾਹੂ ਤ੍ਰਿਭੁਜ ਸਮਰੂਪ ਹੁੰਦੀਆਂ ਹਨ। ਪਰ ਆਇਤ, ਸਮਦੋਭੁਜੀ ਤ੍ਰਿਭੁਜ ਅਤੇ ਅੰਡਾਕਾਰ ਸਮਰੂਪ ਨਹੀਂ ਹੁੰਦੇ। ਜੇ ਕਿਸੇ ਤ੍ਰਿਭੁਜ ਦੇ ਦੋ ਕੋਣਾਂ ਦੀ ਮਾਤਰਾ ਦੁਜੀ ਤ੍ਰਿਭੁਜ ਦੇ ਦੋ ਕੋਣਾਂ ਦੇ ਬਰਾਬਰ ਹੋਵੇ ਤਾਂ ਤ੍ਰਿਭੁਜ ਸਮਰੂਪ ਹੁੰਦੀਆਂ ਹਨ ਇਸ ਨਿਯਮ ਨੂੰ AAA ਸਮਰੂਪ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਦੋ ਸਮਰੂਪ ਤ੍ਰਿਭੁਜਾਂ ਅਤੇ ਵਿੱਚ ਉਹਨਾਂ ਦੀਆਂ ਸੰਗਤ ਭੁਜਾਵਾਂ ਦੇ ਅਨੁਪਾਤ ਸਮਾਨ ਹੁੰਦੇ ਹਨ। ਸਮਰੂਪ ਤ੍ਰਿਭੁਜਾਂ ਦੇ ਖੇਤਰਫਲਾਂ ਦਾ ਅਨੁਪਾਤ ਉਹਨਾਂ ਦੀਆਂ ਸੰਗਤ ਭੁਜਾਵਾਂ ਦੇ ਵਰਗ ਦੇ ਅਨੁਪਾਤ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।[1]
ਨਿਯਮ
ਜੇ
ਅਤੇ
ਕੋਣਾਂ ਦਾ ਮਾਪ ਅਤੇ
ਅਤੇ
ਦਾ ਮਾਪ ਬਰਾਬਰ ਹੋਵੇ ਤਾਂ ਤੀਜਾ ਕੋਣ
ਅਤੇ
ਬਰਾਬਰ ਹੀ ਹੁੰਦੇ ਹਨ ਤਾਂ ਦੋਨੋਂ ਤ੍ਰਿਭੁਜ ਸਮਰੂਪ ਹੁੰਦੇ ਹਨ।
- .
ਤ੍ਰਿਭੁਜ ਦੀਆਂ ਸਾਰੀਆਂ ਸੰਗਤ ਭੁਜਾਵਾਂ ਇਕੋ ਹੀ ਅਨੁਪਾਤ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ।
- . ਤਾਂ ਤ੍ਰਿਭੁਜਾ ਸਮਰੂਪ ਹਨ।
ਜੇ ਤ੍ਰਿਭੁਜਾਂ ਦੀਆਂ ਦੋ ਭੁਜਾਵਾਂ ਇਕੋ ਹੀ ਅਨੁਪਾਤ ਵਿੱਚ ਹੋਣ ਅਤੇ ਉਹਨਾਂ ਵਿਚਕਾਰਲਾ ਕੋਣ ਬਰਾਬਰ ਹੋਵੇ ਤਾਂ ਤ੍ਰਿਭੁਜ ਸਮਰੂਪ ਹੁੰਦੇ ਹਨ।
- ਅਤੇ ਅਤੇ ਬਰਾਬਰ ਹਨ।
ਜਦੋ ਦੋ ਤ੍ਰਿਭੁਜ ਅਤੇ ਸਮਰੂਪ ਹੋਣ ਤਾਂ ਉਹਨਾਂ ਨੂੰ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।
- .
ਤਰਕ ਵਿੱਚ
ਸਬੰਧ R ਸਮਤਾ ਹੈ ਜੇ ਅਤੇ ਸਿਰਫ ਜੇ Rab ਸੱਚ ਹੈ ਤਾਂ Rba ਸੱਚ ਹੈ।.[2] ਤਦ ਜੇ ਪਾਲ ਦੀ ਉਮਰ ਮੈਰੀ ਜਿਨੀ ਹੈ ਤਾਂ ਮੈਰੀ ਦੀ ਉਮਰ ਪਾਲ ਜਿਨੀ ਹੈ ਤਾਂ ਇਹ ਤਰਕ ਦੀ ਸਮਤਾ ਹੈ। ਇਹ ਸਬੰਧ ਅਤੇ (∧, or &), ਜਾਂ (∨, or |), ਦੂਹਰੀ ਸ਼ਤਰ (ਜੇ ਅਤੇ ਸਿਰਫ ਜੇ) (↔) ਹਨ।
ਗਣਿਤ ਦੇ ਹੋਰ ਖੇਤਰਾਂ ਵਿੱਚ
Remove ads
ਵਿਗਿਆਨ ਅਤੇ ਕੁਦਰਤ ਵਿੱਚ
ਭੌਤਿਕ ਵਿਗਿਆਨ ਵਿੱਚ

ਭੌਤਿਕ ਵਿਗਿਆਨ ਅੰਦਰ, ਕਿਸੇ ਭੌਤਿਕੀ ਸਿਸਟਮ ਦੀ ਇੱਕ ਸਮਰੂਪਤਾ, ਸਿਸਟਮ ਦਾ ਉਹ (ਪਰਖਿਆ ਜਾਂ ਅੰਦਰੂਨੀ) ਭੌਤਿਕੀ ਜਾਂ ਗਣਿਤਿਕ ਲੱਛਣ ਹੁੰਦੀ ਹੈ ਜੋ ਕੁੱਝ ਪਰਿਵਰਤਨਾਂ ਅਧੀਨ ਸੁਰੱਖਿਅਤ ਰਹਿੰਦਾ ਹੈ ਜਾਂ ਬਦਲਦਾ ਨਹੀਂ ਹੈ।
ਖਾਸ ਪਰਿਵਰਤਨਾਂ ਦੀ ਕੋਈ ਫੈਮਲੀ ਨਿਰੰਤਰ (ਜਿਵੇਂ ਕਿਸੇ ਚੱਕਰ ਦੀ ਰੋਟੇਸ਼ਨ) ਜਾਂ ਡਿਸਕ੍ਰੀਟ (ਅਨਿਰੰਤਰ, ਜਿਵੇਂ ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਕਿਸੇ ਦੋਭੁਜ ਸਮਰੂਪ ਅਕਾਰ ਦੀ ਰਿਫਲੈਕਸ਼ਨ, ਜਾਂ ਕਿਸੇ ਨਿਯਮਿਤ ਬਹੁਭੁਜ ਦੀ ਰੋਟੇਸ਼ਨ) ਹੋ ਸਕਦੀ ਹੈ। ਨਿਰੰਤਰ ਅਤੇ ਅਨਿਰੰਤਰ ਪਰਿਵਰਤਨ ਸਮਰੂਪਤਾਵਾਂ ਦੀਆਂ ਸਬੰਧਤ ਕਿਸਮਾਂ ਪੈਦਾ ਕਰਦੇ ਹਨ। ਨਿਰੰਤਰ ਸਮਰੂਪਤਾਵਾਂ ਨੂੰ ਲਾਈ ਗਰੁੱਪਾਂ ਰਾਹੀਂ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਜਦੋਂਕਿ ਅਨਿਰੰਤਰ ਸਮਰੂਪਤਾਵਾਂ ਨੂੰ ਸੀਮਤ ਗਰੁੱਪਾਂ (ਦੇਖੋ ਸਮਰੂਪਤਾ ਗਰੁੱਪ) ਰਾਹੀਂ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।
ਇਹ ਦੋ ਧਾਰਨਾਵਾਂ, ਲਾਈ ਅਤੇ ਸੀਮਤ ਗਰੁੱਪ, ਅਜੋਕੀ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੀਆਂ ਬੁਨਿਆਦੀ ਥਿਊਰੀਆਂ ਵਾਸਤੇ ਬੁਨਿਆਦਾਂ ਹਨ। ਸਮਰੂਪਤਾਵਾਂ ਗਰੁੱਪ ਪ੍ਰਸਤੁਤੀਆਂ ਵਰਗੀਆਂ ਗਣਿਤਿਕ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀਆਂ ਲਈ ਅਕਸਰ ਜ਼ਿੰਮੇਵਾਰ ਹਨ, ਅਤੇ ਇਸਦੇ ਨਾਲ ਹੀ, ਕਈ ਸਮੱਸਿਆਵਾਂ ਨੂੰ ਸਰਲ ਕਰਨ ਲਈ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ।
ਤਰਕ ਦੇ ਤੌਰ ਤੇ ਭੌਤਿਕ ਵਿਗਿਆਨ ਅੰਦਰ ਕਿਸੇ ਸਮਰੂਪਤਾ ਦੀ ਸਭ ਤੋਂ ਜਿਆਦਾ ਮਹੱਤਵਪੂਰਨ ਉਦਾਹਰਨ ਇਹ ਹੈ ਕਿ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਇਸ਼ਾਰਿਆਂ ਦੀਆਂ ਸਾਰੀਆਂ ਫਰੇਮਾਂ ਵਿੱਚ ਇੱਕੋ ਮੁੱਲ ਰੱਖਦੀ ਹੈ, ਜਿਸਨੂੰ ਗਣਿਤਿਕ ਸ਼ਬਦਾਂ ਵਿੱਚ ਪੋਆਇਨਕੇਅਰ ਗਰੁੱਪ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਜੋ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਸਮਰੂਪਤਾ ਗਰੁੱਪ ਹੈ। ਇੱਕ ਹੋਰ ਮਹੱਤਵਪੂਰਨ ਉਦਾਹਰਨ ਮਨਚਾਹੇ ਡਿੱਫਰੈਂਸ਼ੀਏਬਲ ਨਿਰਦੇਸ਼ਾਂਕ ਪਰਿਵਰਤਨਾਂ ਅਧੀਨ ਭੌਤਿਕੀ ਨਿਯਮਾਂ ਦੇ ਰੂਪ ਦੀ ਇਨਵੇਰੀਅੰਸ (ਸਥਿਰਤਾ) ਹੈ, ਜੋ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਵਿਚਾਰ ਹੈ।
ਜੀਵ ਵਿਗਿਆਨ ਵਿੱਚ
ਸਾਰੇ ਪ੍ਰਾਣੀ ਸਮੇਤ ਮਨੁੱਖ ਦਾ ਸੱਜਾ ਪਾਸਾ ਅਤੇ ਖੱਬਾ ਪਾਸੇ ਵਿੱਚ ਸਮਾਨਤਾ ਹੈ। ਜੇ ਇਹਨਾਂ ਦੀ ਸਰੀਰ ਨੂੰ ਵਿੱਚਕਾਰ ਤੋਂ ਦੇਖਿਆ ਜਾਵੇ ਤਾ ਸੱਜਾ ਅਤੇ ਖੱਬਾ ਵਿੱਚ ਸਮਤਾ ਹੈ। ਪੌਦਿਆ ਅਤੇ ਸਮੁੰਦਰੀ ਜੀਵਾਂ ਵਿੱਚ ਰੇਡੀਅਲ ਜਾਂ ਘੁਮਾਉਦਾਰ ਸਮਤਾ ਹੁੰਦੀ ਹੈ। ਤਾਰਾ ਮੱਛੀ, ਸਮੁੰਦਰੀ ਲਿਲੀ ਵਿੱਚ ਪੰਜ'ਭੁਜੀ ਸਮਤਾ ਹੁੰਦੀ ਹੈ।
ਰਸਾਇਣ ਵਿਗਿਆਨ ਵਿੱਚ
Remove ads
ਸਮਾਜਿਕ ਮੇਲਜੋਲਾਂ ਵਿੱਚ
ਕਲਾ ਵਿੱਚ
ਆਰਟੀਟੈਕਚਰ ਵਿੱਚ
ਆਰਕੀਟੈਕਚਰ ਦੇ ਹਰ ਨਾਪ 'ਚ ਸਮਤਾ ਹੈ। ਇਮਾਰਤਾਂ ਦੇ ਵਿੱਚ ਸਮਤਾ ਦੇਖਣ ਨੂੰ ਮਿਲਦੀ ਹੈ ਜਿਵੇਂ ਤਾਜ ਮਹਿਲ ਅਮਰੀਕਾ ਦੇ ਰਾਸਟਰਪਤੀ ਦਾ ਦਫਤਰ ਵਾਈਟ ਹਾਊਸ[3][4] ਇਰਾਨ ਦੇ ਸ਼ਹਿਰ ਇਸ਼ਫਾਨ ਵਿੱਚ ਮਸਜਿਦ ਦੀ ਛੱਤ ਦੀ ਸਮਤਾ ਅੱਠ ਪਾਸੀ ਹੈ

ਮਿੱਟੀ ਦੇ ਬਰਤਨਾਂ ਅਤੇ ਧਾਤ ਦੀਆਂ ਸੁਰਾਹੀਆਂ ਵਿੱਚ
ਗੱਦਿਆਂ ਵਿੱਚ
ਪਰਦਿਆਂ ਅਤੇ ਗਲੀਚਿਆਂ ਵਿੱਚ
ਸੰਗੀਤ ਵਿੱਚ
ਸੰਗੀਤਿਕ ਰੂਪ
ਪਿੱਚ ਬਣਤਰਾਂ
ਅਨੁਰੂਪਤਾ
ਹੋਰ ਕਲਾ ਅਤੇ ਸ਼ਿਲਪਾਂ ਵਿੱਚ
ਸੁਹਜ-ਸ਼ਾਸਤਰਾਂ ਵਿੱਚ
ਸਾਹਿਤ ਵਿੱਚ
Remove ads
ਹਵਾਲੇ
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads