Лучшие вопросы
Таймлайн
Чат
Перспективы
Гиперболические уравнения
Из Википедии, свободной энциклопедии
Remove ads
Гиперболические уравнения — класс дифференциальных уравнений в частных производных. Характеризуются тем, что задача Коши с начальными данными, заданными на нехарактеристической поверхности, однозначно разрешима.

Уравнения второго порядка
Суммиров вкратце
Перспектива
Рассмотрим общий вид скалярного линейного дифференциального уравнения в частных производных второго порядка относительно функции :
При этом уравнение записано в симметричном виде, то есть . Тогда эквивалентное уравнение в виде квадратичной формы:
- ,
где .
Матрица называется матрицей главных коэффициентов.
Если сигнатура полученной формы равна , то есть матрица имеет положительных собственных значений и одно отрицательное (либо наоборот: отрицательных, одно положительное), то уравнение относят к гиперболическому типу[1].
Другое, эквивалентное определение: уравнение называется гиперболическим, если оно представимо в виде:
- ,
где — положительно определённый эллиптический оператор, .
Remove ads
Уравнения первого порядка на плоскости
Суммиров вкратце
Перспектива
Уравнение типа
- ,
где , , — квадратные матрицы и — неизвестные, являются гиперболическими, если матрица имеет различные вещественные собственные значения для всех параметров[2].
Remove ads
Решение гиперболических уравнений
Для нахождения однозначного решения уравнение доопределяется начальными и краевыми условиями. Поскольку уравнение имеет второй порядок по времени, то начальных условия два: для самой функции и для её производной.
- Для аналитического решения уравнений в бесконечной области используют формулу Кирхгофа, которая в одномерном случае представляется в виде формулы Д’Аламбера, а в двухмерном — в виде формулы Пуассона — Парсеваля.
- Для аналитического решения в конечной области можно использовать метод разделения переменных Фурье и его модификации для решения неоднородных уравнений.
- Для численного решения используют метод конечных элементов, метод конечных разностей, их комбинацию (по времени решают конечными разностями, по пространству — конечными элементами)[3], а также другие численные методы, подходящие для задачи.
Примеры гиперболических уравнений
- Волновое уравнение — уравнение, описывающее колебания струн, мембран и так далее.
- Различные уравнения, получаемые из уравнений Максвелла, описывающие электромагнитное поле. Это может быть постановка относительно одного из векторов , считая ненулевой только одну из компонент вектора (то есть когда уравнение становится скалярным).
- Сеть Чебышёва — решение линейного гиперболического уравнения первой степени.
Remove ads
См. также
Литература
Примечания
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads