Лучшие вопросы
Таймлайн
Чат
Перспективы

Функции Бесселя

Из Википедии, свободной энциклопедии

Функции Бесселя
Remove ads

Фу́нкции Бе́сселя в математике — семейство функций, являющихся каноническими решениями дифференциального уравнения Бесселя:

где  — произвольное вещественное число (в общем случае комплексное), называемое порядком.

Thumb
График функций Бесселя первого рода

Наиболее часто используемые функции Бесселя — функции целых порядков.

Хотя и порождают одинаковые уравнения, обычно договариваются о том, чтобы им соответствовали разные функции (это делается, например, для того, чтобы функция Бесселя была гладкой по ).

Функции Бесселя впервые были определены швейцарским математиком Даниилом Бернулли, а названы в честь Фридриха Бесселя.

Remove ads

Применения

Уравнение Бесселя возникает во время нахождения решений уравнения Лапласа и уравнения Гельмгольца в цилиндрических и сферических координатах. Поэтому функции Бесселя применяются при решении многих задач о распространении волн, статических потенциалах и т. п., например:

  • электромагнитные волны в цилиндрическом волноводе;
  • теплопроводность в цилиндрических объектах;
  • формы колебания тонкой круглой мембраны;
  • распределение интенсивности света, дифрагированного на круглом отверстии;
  • скорость частиц в цилиндре, заполненном жидкостью и вращающемся вокруг своей оси;
  • волновые функции в сферически симметричном потенциальном ящике.

Функции Бесселя применяются и в решении других задач, например, при обработке сигналов.

Функция Бесселя является обобщением функции синуса. Ее можно трактовать как колебание струны с переменной толщиной, переменным натяжением (или одновременно обоими условиями); колебаниями в среде с переменными свойствами; колебаниями дисковой мембраны и т. д.

Remove ads

Определения

Суммиров вкратце
Перспектива

Поскольку приведённое уравнение является линейным дифференциальным уравнением второго порядка, у него должно быть два линейно независимых решения. Однако в зависимости от обстоятельств выбираются разные определения этих решений. Ниже приведены некоторые из них.

Функции Бесселя первого рода

Функциями Бесселя первого рода, обозначаемыми , являются решения, конечные в точке при целых или неотрицательных . Выбор конкретной функции и её нормализации определяются её свойствами. Можно определить эти функции с помощью разложения в ряд Тейлора около нуля (или в более общий степенной ряд при нецелых ):

Здесь  — это гамма-функция Эйлера, обобщение факториала на нецелые значения. График функции Бесселя похож на синусоиду, колебания которой затухают пропорционально , хотя на самом деле нули функции расположены не периодично (однако расстояние между двумя последовательными нулями стремится к при )[1].

Ниже приведены графики для :

Thumb
График функции Бесселя первого рода J

Если не является целым числом, функции и линейно независимы и, следовательно, являются решениями уравнения. Но если целое, то верно следующее соотношение:

Оно означает, что в этом случае функции линейно зависимы. Тогда вторым решением уравнения станет функция Бесселя второго рода (см. ниже).

Интегралы Бесселя

Можно дать другое определение функции Бесселя для целых значений , используя интегральное представление:

Этот подход использовал Бессель, изучив с его помощью некоторые свойства функций. Возможно и другое интегральное представление:

Для нахождения интегрального представления функции Бесселя в случае нецелых необходимо учесть, что имеется разрез вдоль оси абсцисс. Это вызвано тем, что подынтегральное выражение более не является -периодическим. Таким образом, контур интегрирования разбивается на 3 участка: луч от до , где , окружность единичного радиуса и луч от до при . Проделав несложные математические преобразования, можно получить следующее интегральное представление:

Нетрудно убедиться, что при целых это выражение переходит в предыдущую формулу.

Функции Неймана

Функции Неймана — решения уравнения Бесселя, бесконечные в точке .

Эта функция связана с следующим соотношением:

где в случае целого берётся предел по , вычисляемый, например, с помощью правила Лопиталя.

Функции Неймана также называются функциями Бесселя второго рода. Линейная комбинация функций Бесселя первого и второго родов являет собой полное решение уравнения Бесселя:

Ниже приведён график для :

Thumb
График функции Бесселя второго рода N

В ряде книг функции Неймана обозначаются .

Сферические функции Бесселя

Thumb
Сферические функции Бесселя первого рода, jn(x), для n = 0, 1, 2
Thumb
Сферические функции Бесселя второго рода, yn(x), для n = 0, 1, 2

При решении уравнения Гельмгольца в сферических координатах методом разделения переменных уравнение на радиальную часть имеет вид

Два линейно-независимых решения называются сферическими функциями Бесселя jn и yn, и связаны с обычными функциями Бесселя Jn и Неймана Yn с помощью[2]

yn также обозначается nn или ηn; некоторые авторы называют эти функции сферическими функциями Неймана.

Сферические функции Бесселя также могут быть записаны как (формула Релея)[3]

Несколько первых сферических функций Бесселя[4]:

и Неймана[5]:

Производящие функции

Производящие функции сферических функций Бесселя[6]:

Дифференциальные соотношения

В следующих формулах fn может быть заменено на jn, yn, h(1)
n
, h(2)
n
, где h(1)
n
и h(2)
n
 — сферические функции Ханкеля, для n = 0, ±1, ±2, ...[7]:

Remove ads

Свойства

Суммиров вкратце
Перспектива

Ортогональность

Пусть  — нули функции Бесселя . Тогда[1]:

.

Асимптотика

Для функций Бесселя первого и второго рода известны асимптотические формулы. При малых аргументах и неотрицательных они выглядят так[8]:

,

где  — постоянная Эйлера — Маскерони (0,5772…), а  — гамма-функция Эйлера. Для больших аргументов () формулы выглядят так:

Использование следующего члена асимптотического разложения позволяет значительно уточнить результат. Для функции Бесселя нулевого порядка он выглядит следующим образом:

Гипергеометрический ряд

Функции Бесселя могут быть выражены через гипергеометрическую функцию:

Таким образом, при целых функция Бесселя однозначная аналитическая, а при нецелых — многозначная аналитическая.

Производящая функция

Существует представление для функций Бесселя первого рода и целого порядка через коэффициенты ряда Лорана функции определённого вида, а именно

Remove ads

Соотношения

Суммиров вкратце
Перспектива

Формула Якоби — Ангера и связанные с ней

Получается из выражения для производящей функции при , [9]:

При , [9]:

Рекуррентные соотношения

Для функций Бесселя существует ряд рекуррентных соотношений. Приведём здесь некоторые из них:

[10].

Теорема сложения

Для любого целого n и комплексных , выполняется[11]

Интегральные выражения

Для любых и (в том числе комплексных) выполняется[12]

Частным случаем последней формулы является выражение

Remove ads

См. также

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads