Лучшие вопросы
Таймлайн
Чат
Перспективы
Жёсткость
Из Википедии, свободной энциклопедии
Remove ads
Механи́ческая жёсткость (также жёсткость) — способность твёрдого тела, конструкции или её элементов сопротивляться деформации[1][2][3] (изменению формы и/или размеров) от приложенного усилия вдоль выбранного направления в заданной системе координат.

Обратная к характеристике называется механической податливостью. Для случая упругих деформаций в записи закона Гука рассматривается как физико-геометрическая характеристика сечения элемента конструкции и равна произведению модуля упругости материала и соответствующей геометрической характеристики сечения.
Remove ads
Общие сведения
Суммиров вкратце
Перспектива
Механическая жёсткость является одним из важных факторов, определяющих работоспособность конструкции, и имеет такое же, а иногда и большее значение для обеспечения её надёжности, как и прочность. Конструкция может быть прочной, но не жёсткой, поскольку значительные деформации могут привести к появлению опасных с точки зрения прочности напряжений.
Недостаточная жёсткость и связанные с ней повышенные деформации могут вызвать потерю работоспособности конструкции по различным причинам. Повышенные деформации могут нарушить равномерность распределения нагрузки и вызвать их концентрацию на отдельных участках, создавая высокие местные напряжения, что может привести к разрушению. Недостаточная жёсткость корпусных деталей нарушает взаимодействие размещённых в них механизмов, вызывая повышенное трение и износ в кинематических парах, появление вибраций.
Недостаточная жёсткость валов и опор зубчатых передач изменяет нормальное зацепление колес, что приводит к быстрому усталостному выкрашиванию и износу их рабочих поверхностей. Кроме того, увеличиваются углы перекосов подшипников, уменьшается их долговечность, а в отдельных случаях даже недостаточная жёсткость приводит к быстрому разрушению.
В технологических машинах, выполняющих точные операции, недостаточная жёсткость системы «станок — инструмент — устройство — деталь» не позволяет получить размеры с заданной точностью.
Remove ads
Оценка жёсткости
Суммиров вкратце
Перспектива
Оценивать жёсткость принято коэффициентом жёсткости — отношением усилия (силы), прилагаемого к конструкции, к максимальной деформации, вызванной этим усилием.
Коэффициент жёсткости тела является мерой сопротивления упругого тела деформации. Для упругого тела при нагрузке (например, растяжение или сжатие стержня вызванные приложенной силой), жёсткость определяется, как:
- где — сила, приложенная к телу,
- — деформация, вызванная силой вдоль направления действия силы (например, изменение длины растянутой пружины или прогиб балки).
В СИ коэффициент механической жёсткости измеряется в ньютонах на метр (Н/м).

Для упругого тела можно рассматривать и механическую жёсткость при деформации кручения, тогда коэффициент крутильной (торсионной) жёсткости :
- где — приложенный к телу крутящий момент,
- — угол закручивания тела по оси приложения крутящего момента.
В системе СИ коэффициент жёсткости при кручении обычно измеряется в ньютон-метрах на радиан (Н·м/рад).
Remove ads
Механическая жесткость и упругие свойства материала
Суммиров вкратце
Перспектива
Между модулем упругости материала и жёсткостью детали, изготовленной из этого материала есть существенная разница. Модуль упругости — это свойство материала; механическая жёсткость — это свойство конструкции или её компонента, а следовательно, она зависит не только от материала, из которого он изготовлен, но и от геометрических размеров, которые описывают этот компонент. То есть модуль упругости — это интенсивная величина (не зависит от размеров объекта), характеризующий материал; с другой стороны, механическая жёсткость — это экстенсивная характеристика (зависимая от размеров) твердого тела, которая зависит как от материала, так и от его характерных геометрических размеров, формы и граничных условий.
Например, для элемента в виде бруса, испытывающего растяжения или сжатия, коэффициент осевой жёсткости равен:
- где — площадь поперечного сечения, перпендикулярной линии приложения усилия,
- — модуль Юнга (модуль упругости первого рода),
- — длина элемента.
Для деформации сдвига коэффициент жёсткости:
- где — площадь поперечного сечения в плоскости сдвига,
- — модуль сдвига (модуль упругости второго рода) для данного материала, : — высота элемента смещения перпендикулярно направлению сдвига.
Для коэффициента жёсткости при кручении цилиндрического стержня:
- где — полярный момент инерции,
- — модуль сдвига (модуль упругости второго рода) для данного материала, : — длина элемента.
По аналогии коэффициент жёсткости для условий чистого изгиба:
- где — модуль сдвига (модуль упругости второго рода) для данного материала,
- — осевой момент инерции,
- — длина элемента.
Remove ads
Расчёт на жёсткость
Суммиров вкратце
Перспектива
Расчёт на жёсткость предусматривает ограничение упругих перемещений допустимыми величинами. Значения допустимых перемещений ограничены условиями работы сопряженных деталей (зацепление зубчатых колес, работа подшипников в условиях изгиба валов) или технологическими требованиями (точность обработки на металлорежущих станках).
Различают собственную жёсткость деталей, обусловленную деформациями всего материала деталей рассматриваются как балки, пластины, оболочки с идеализированными опорами, и контактную жёсткость, которая связана с деформациями поверхностных слоев материала в зоне контактного взаимодействия деталей. Если площадь контакта мала, то возникают существенные контактные деформации, и их расчёт производится по формулам Герца. Преимущественно при значительных нагрузках основную роль играет собственная жёсткость, однако, в прецизионных машинах или устройствах при относительно малых нагрузках контактные деформации играют значительную роль и могут даже превышать собственные.
При большой контактной площади деформации, обусловленные смятием микронеровностей, определяются по эмпирическим формулам с использованием экспериментально установленных коэффициентов контактной податливости.
Условия обеспечения жёсткости записываются в виде (в квадратных скобках указаны предельно-допустимые деформации):
- — для деформации растяжения-сжатия;
- — для деформации кручения;
- — для стрелы прогиба детали в виде балки на опорах.
Remove ads
Мероприятия по обеспечению механической жёсткости
Суммиров вкратце
Перспектива
Главным практическим средством повышения жёсткости является изменение геометрических параметров детали с целью обеспечения достаточной жёсткости формы. Главными конструктивными средствами повышения жёсткости деталей и конструкций являются:
- по возможности устранения деформации изгиба, как невыгодной с точки зрения обеспечения жёсткости и прочности, замена её деформацией растяжения (сжатия)
- для деталей, работающих на изгиб, выбор рациональных типов опор и их размещения, исключение по возможности консолей и уменьшения их длины, стремясь к равномерному распределению нагрузки по длине;
- рациональное, но без роста массы, увеличение моментов инерции сечений путем удаления материала от нейтральной оси, усиление закладных участков и участков перехода от одного сечения к другому;
- для коробчатых деталей — использование криволинейных выпуклых стенок;
- блокировки деформаций путем установления раскосов (для рам), обечаек и перемычек (для полых тонкостенных цилиндров), оребрения тонких стенок, рифление плоских поверхностей крышек и тому подобное.
Наряду с собственной жесткостью в соединениях деталей значительную роль играет контактная жёсткость, которая может определять точность движения контактирующих деталей, вызвать дополнительные динамические нагрузки, влиять на износостойкость поверхностей и их долговечность, на рассеяние энергии колебаний.
Важнейшими конструктивными мерами по повышению контактной жёсткости являются:
- уменьшение шероховатости поверхности;
- создание натяжения или предварительное затягивание в соединениях;
- создание слоя смазки между контактирующими поверхностями.
Remove ads
Примечания
Источники
Ссылки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads