Лучшие вопросы
Таймлайн
Чат
Перспективы

Канторово множество

один из простейших фракталов, подмножество единичного отрезка вещественной прямой Из Википедии, свободной энциклопедии

Remove ads

Ка́нторово мно́жество (канторов дисконтинуум, канторова пыль) — один из простейших фракталов, подмножество единичного отрезка вещественной прямой, которое является классическим примером дисконтинуума в математическом анализе.

Описано в 1883 году Георгом Кантором. Этим он ответил на следующий вопрос Магнуса Миттаг-Леффлера, заданный в письме от 21 июня 1882 года:[1]

Пусть обозначает множество предельных точек множества . Существует ли нигде неплотное множество , такое что пересечение
не пусто?
Remove ads

Определения

Суммиров вкратце
Перспектива

Классическое построение

Из единичного отрезка удалим среднюю треть, то есть интервал . Оставшееся точечное множество обозначим через . Множество состоит из двух отрезков; удалим теперь из каждого отрезка его среднюю треть и оставшееся множество обозначим через . Повторив эту процедуру опять, удаляя средние трети у всех четырёх отрезков, получаем . Дальше таким же образом получаем последовательность замкнутых множеств . Пересечение

и называется канторовым множеством.

Cantor set, in seven iterations

Множества

С помощью троичной записи

Канторово множество может быть также определено как множество чисел от нуля до единицы, которые можно представить в троичной записи с помощью только нулей и двоек (числа с единицей в -м разряде вырезаются на -м шаге построения). Число принадлежит канторовому множеству, если у него есть хотя бы одно такое представление. Например, , так как . В такой записи легко увидеть континуальность канторова множества.

Как аттрактор

Канторово множество может быть определено как аттрактор. Рассмотрим все последовательности точек такие, что для любого

или .

Тогда множество пределов всех таких последовательностей является канторовым множеством.

Как счётная степень простого двоеточия

В литературе по общей топологии канторово множество определяется как счётная степень двухточечного дискретного пространства — [2]; такое пространство гомеоморфно классически построенному канторову множеству (с обычной евклидовой топологией)[3][4].

Remove ads

Свойства

Remove ads

Вариации и обобщения

Суммиров вкратце
Перспектива

Канторов куб (обобщённый канторов дисконтинуум) веса  — -я степень двухточечного дискретного пространства . Канторов куб универсален для всех нульмерных пространств веса не больше . Каждый хаусдорфов компакт веса не больше есть непрерывный образ подпространства канторова куба .

Диадический компакт[англ.] — компакт, представимый как непрерывный образ канторова куба. Диадическое пространство[англ.][5] — топологическое пространство, для которого существует компактификация, являющаяся диадическим компактом.

См. также

Примечания

Литература

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads