Лучшие вопросы
Таймлайн
Чат
Перспективы

Квадратное треугольное число

число, являющееся как треугольным, так и квадратным Из Википедии, свободной энциклопедии

Remove ads

В теории чисел квадратным треугольным числом (или треугольным квадратным числом) называется число, являющееся как треугольным, так и квадратным. Существует бесконечное число квадратных треугольных чисел.

Например, число 36 является и квадратным (), и треугольным :

******
******
******
******
******
******
*
**
***
****
*****
******
*******
********

Квадратные треугольные числа образуют последовательность:

0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, 1882672131025, … (последовательность A001110 в OEIS).
Remove ads

Формулы

Суммиров вкратце
Перспектива

Будем записывать Nk для k-го квадратного треугольного числа, sk и tk для сторон квадрата и треугольника соответственно, тогда

Последовательности Nk, sk и tk присутствуют в OEIS (A001110, A001109 и A001108 соответственно).

В 1778 году Леонард Эйлер установил явную формулу[1][2]:12—13

Другие эквивалентные формулы, которые могут быть выведены из этой формулы:

Соответствующие явные формулы для sk и tk[2]:13:

и

Remove ads

Уравнение Пелля

Суммиров вкратце
Перспектива

Связь квадратных треугольных чисел с уравнением Пелля можно получить следующим образом[3]:

любое треугольное число имеет вид t(t + 1)/2, так что нужно найти t и s такие, что

Умножая левую и правую часть на 8 и выделяя полный квадрат, получим

подставляя теперь x = 2t + 1 и y = 2s, мы получим диофантово уравнение

которое является уравнением Пелля. Решениями этого уравнения служат числа Пелля Pk[4]

и потому все решения задаются формулами

Имеется множество тождеств, связанных с числами Пелля, а вышеприведённые формулы переводят их в тождества с квадратными треугольными числами.

Remove ads

Рекуррентные отношения

Суммиров вкратце
Перспектива

Имеются рекуррентные отношения для квадратных треугольных чисел, как и для сторон соответствующих квадратов и треугольников. Мы имеем[5]:(12)

А также[1][2]:13

Remove ads

Другие свойства

Суммиров вкратце
Перспектива

Все квадратные треугольные числа имеют вид b2c2, где b / c — значение подходящей дроби для непрерывной дроби квадратного корня из 2[6].

А. В. Сильвестер (A. V. Sylwester) дал короткое доказательство бесконечности количества квадратных треугольных чисел, а именно[7]:

Если треугольное число n(n+1)/2 является квадратом, то существует большее треугольное число:

И это значение должно быть квадратом, поскольку является произведением трёх квадратов: (очевидно), (n-ое треугольное число — по предположению является квадратом) и (очевидно).

Производящей функцией для квадратных треугольных чисел будет[8]:

Remove ads

Численные значения

С увеличением k, отношение tk / sk стремится к , а отношение соседних квадратных треугольных чисел стремится к .

Remove ads

Примечания

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads