Лучшие вопросы
Таймлайн
Чат
Перспективы

Полный квадрат

произведение какого-либо целого на самого себя Из Википедии, свободной энциклопедии

Remove ads

Полный квадрат, также точный квадрат или квадратное число, — число, являющееся квадратом некоторого целого числа. Иными словами, квадратом является целое число, квадратный корень из которого извлекается нацело. Геометрически такое число может быть представлено в виде площади квадрата с целочисленной стороной.

Например, 9 — это квадратное число, так как оно может быть записано в виде 3 × 3, а также представляет площадь квадрата со стороной, равной 3.

Квадратное число входит в категорию классических фигурных чисел.

Remove ads

Примеры

Последовательность квадратов начинается так:

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, … (последовательность A000290 в OEIS)
Подробнее _0, _1 ...
Remove ads

Представления и свойства

Суммиров вкратце
Перспектива

Квадрат натурального числа можно представить в виде суммы первых нечётных чисел:

1:
2:
...
7:
...

Ещё один способ представления квадрата натурального числа:

Пример:

1:
2:
...
4:
...

Сумма квадратов первых натуральных чисел вычисляется по формуле[1]:

Ряд обратных квадратов сходится[2]:

Четыре различных квадрата не могут образовывать арифметическую прогрессию.[3] Арифметические прогрессии из трёх квадратов существуют — например: 1, 25, 49.

Каждое натуральное число может быть представлено как сумма четырёх квадратов (теорема Лагранжа о сумме четырёх квадратов).

4900 — единственное число > 1, которое является одновременно квадратным и пирамидальным.

Суммы пар последовательных треугольных чисел являются квадратными числами.

В десятичной записи квадратные числа имеют следующие свойства:

  • Последняя цифра квадрата в десятичной записи может быть равной 0, 1, 4, 5, 6 или 9 (квадратичные вычеты по модулю 10).
  • Квадрат не может оканчиваться нечётным количеством нулей.
  • Квадрат либо делится на 4, либо при делении на 8 даёт остаток 1. Квадрат либо делится на 9, либо при делении на 3 даёт остаток 1.
  • Две последние цифры квадрата в десятичной записи могут принимать значения 00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81, 84, 89 или 96 (квадратичные вычеты по модулю 100). Зависимость предпоследней цифры квадрата от последней можно представить в виде следующей таблицы:
Подробнее последняя цифра, предпоследняя цифра ...
Remove ads

Геометрическое представление

1
* x
4
* *
* *
* *
* *
9
* * *
* * *
* * *
* * *
* * *
* * *
16
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
25
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *

См. также

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads