Лучшие вопросы
Таймлайн
Чат
Перспективы
Многозначная функция
обобщение понятия функции, допускающее наличие нескольких значений функции для одного аргумента Из Википедии, свободной энциклопедии
Remove ads
Многозна́чная фу́нкция — обобщение понятия функции, допускающее наличие нескольких значений функции для одного аргумента[1].

Определение
Функция , которая каждому элементу множества ставит в соответствие некоторое подмножество множества называется многозначной функцией[2], если хотя бы для одного значение содержит более одного элемента
Обычные (однозначные) функции можно рассматривать как частный случай многозначных, у которых значение состоит ровно из одного элемента.
Remove ads
Примеры
Суммиров вкратце
Перспектива
Простейший пример — двузначная функция квадратного корня из положительного числа, у неё два значения, различающиеся знаком. Например, квадратный корень из 16 имеет два значения — и
Другой пример — обратные тригонометрические функции (например, арксинус) — поскольку значения прямых тригонометрических функций повторяются с периодом или то значения обратных функций многозначны («бесконечнозначны»), все они имеют вид или где — произвольное целое число.
Многозначные функции неудобно использовать в формулах, поэтому из их значений нередко выделяют одно, которое называют главным. Для квадратного корня это неотрицательное значение (то есть, арифметический квадратный корень), для арксинуса — значение, попадающее в интервал и т. д.
Первообразную функцию (неопределённый интеграл) также можно рассматривать как бесконечнозначную функцию, поскольку она определена с точностью до константы интегрирования.
Remove ads
В комплексном анализе и алгебре
Характерный пример многозначных функций — многозначные аналитические функции в комплексном анализе. Неоднозначность возникает при аналитическом продолжении по разным путям. Также часто многозначные функции получаются в результате взятия обратных функций.
Например, корень n-й степени из любого ненулевого комплексного числа принимает ровно значений. У комплексного логарифма число значений бесконечно, одно из них объявлено главным.
В комплексном анализе понятие многозначной функции тесно связано с понятием римановой поверхности — поверхности в многомерном комплексном пространстве, на которой данная функция становится однозначной.
См. также
Примечание
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads