Лучшие вопросы
Таймлайн
Чат
Перспективы

Первообразная

любая функция, производная которой равна заданной Из Википедии, свободной энциклопедии

Remove ads

Первообра́зная для функции (иногда называемая антипроизводной или примити́вной функцией) — это такая функция, производная которой равна . Это одно из важнейших понятий математического анализа вещественной переменной (существуют также обобщения этого понятия для комплексных функций[1]).

Remove ads

Определение

Суммиров вкратце
Перспектива

Первообразной для данной функции называют[2] такую функцию , производная которой равна (на всей области определения ), то есть . Нахождение первообразной является операцией, обратной дифференцированию — последнее по заданной функции находит её производную, а найдя первообразную, мы, наоборот, по заданной производной определили исходную функцию.

Первообразные важны тем, что позволяют вычислять определённые интегралы. Если  — первообразная интегрируемой непрерывной функции , то:

Это соотношение называется формулой Ньютона — Лейбница.

Технически нахождение первообразной заключается в вычислении неопределённого интеграла для , а сам процесс называется интегрированием. О применении этой теории в геометрии см. Интегральное исчисление.

Пример: функция является первообразной для потому что

Remove ads

Неоднозначность

Thumb
Поле направлений функции , показывающий три решения постоянной интегрирования c.

Если  — первообразная для , то любая функция, полученная из  добавлением константы: тоже является первообразной для . Таким образом, если функция имеет первообразную, то она входит в целое семейство первообразных[2] которое называется неопределённым интегралом и записывается в виде интеграла без указания пределов:

Верно и обратное: если  — первообразная для , и функция определена на каком-либо интервале, тогда каждая первообразная отличается от на константу: всегда существует число , такое что для всех . Графики таких первообразных смещены вертикально относительно друг друга, и их положение зависит от значения Число называют постоянной интегрирования.

Например, семейство первообразных для функции имеет вид: , где  — любое число.

Если область определения функции не является сплошным интервалом, то её первообразные не обязаны отличаться на константу[3]. Так, например, функция не существует в нуле, поэтому её область определения состоит из двух интервалов: и Соответственно получаются два независимых семейства первообразных на этих интервалах: , где является константой при и, вообще говоря, другой константой при :

Remove ads

Существование

Суммиров вкратце
Перспектива

Каждая непрерывная функция имеет первообразную , одна из которых представляется в виде интеграла от с переменным верхним пределом:

Также существуют не непрерывные (разрывные) функции, которые имеют первообразную. Например, с не непрерывна при , но имеет первообразную с . Для разрывных ограниченных функций вместо интеграла Римана удобно использовать более общий интеграл Лебега. Необходимыми условиями существования первообразной являются принадлежность функции первому классу Бэра и выполнение для неё свойства Дарбу[2].

Многие первообразные, даже несмотря на то, что они существуют, не могут быть выражены через элементарные функции (то есть через многочлены, экспоненциальные функции, логарифмы, тригонометрические функции, обратные тригонометрические функции и их комбинации). Например:

.

Для таких функций интеграл от них, если он существует, может быть вычислен приближённо с помощью численного интегрирования.

Remove ads

Свойства первообразной

  • Первообразная суммы функций равна сумме первообразных для слагаемых.
  • Первообразная произведения константы и функции равна произведению константы и первообразной функции.
  • У всех функций, непрерывных на отрезке, существуют и первообразная, и интеграл по Риману. Однако в общем случае существование первообразной и интегрируемость функции не связаны[4]:
    • Функция знака (sgn) интегрируема по Риману, но не имеет первообразной (из-за разрыва в нуле).
    • У функции (положим также ) на отрезке имеется конечная производная таким образом, у функции существует первообразная (а именно, ), но не ограничена на и поэтому не интегрируема по Риману.
Remove ads

Техника интегрирования

Нахождение первообразных значительно сложнее, чем нахождение производных. Для этого имеется несколько методов:

Remove ads

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads