Лучшие вопросы
Таймлайн
Чат
Перспективы
Полюс (комплексный анализ)
Из Википедии, свободной энциклопедии
Remove ads
Изолированная особая точка называется полюсом функции , голоморфной в некоторой проколотой окрестности этой точки, если существует предел
- .

Remove ads
Критерии полюса
- Точка является полюсом тогда, и только тогда, когда в разложении функции в ряд Лорана в проколотой окрестности точки главная часть содержит конечное число отличных от нуля членов, то есть
- ,
- где — правильная часть ряда Лорана.
- Если , то называется полюсом порядка .
Если , то полюс называется простым.
- Точка является полюсом порядка тогда и только тогда, когда , а
- Точка является полюсом порядка тогда и только тогда, когда она является для функции нулем порядка .
Remove ads
См. также
- Другие типы изолированных особых точек:
Литература
- Бицадзе А.В. Основы теории аналитических функций комплексного переменного — М., Наука, 1969.
- Шабат Б. В., Введение в комплексный анализ — М., Наука, 1969.
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads