Лучшие вопросы
Таймлайн
Чат
Перспективы
Пентагональный икоситетраэдр
полуправильный многогранник (каталаново тело), двойственный курносому кубу Из Википедии, свободной энциклопедии
Remove ads
Пентагона́льный икоситетра́эдр (от др.-греч. πέντε — «пять», γωνία — «угол», εἴκοσι — «двадцать», τέτταρες — «четыре» и ἕδρα — «грань») — полуправильный многогранник (каталаново тело), двойственный курносому кубу. Составлен из 24 одинаковых неправильных пятиугольников.
Имеет 38 вершин. В 6 вершинах (расположенных так же, как вершины октаэдра) сходятся по 4 грани своими острыми углами; в 8 вершинах (расположенных так же, как вершины куба) сходятся по 3 грани теми тупыми углами, которые дальше от острого; в остальных 24 вершинах две грани сходятся своими тупыми углами, ближними к острому, и одна — тупым углом, дальним от острого.
У пентагонального икоситетраэдра 60 рёбер — 24 «длинных» и 36 «коротких».
В отличие от большинства других каталановых тел, пентагональный икоситетраэдр (наряду с пентагональным гексеконтаэдром) является хиральным и существует в двух разных зеркально-симметричных (энантиоморфных) вариантах — «правом» и «левом».
Remove ads
Метрические характеристики и углы
Суммиров вкратце
Перспектива
При определении метрических свойств пентагонального икоситетраэдра приходится решать кубические уравнения и пользоваться кубическими корнями — тогда как для ахиральных каталановых тел не требуется ничего сложнее квадратных уравнений и квадратных корней. Поэтому пентагональный икоситетраэдр, в отличие от большинства других каталановых тел, не допускает евклидова построения. То же верно и для пентагонального гексеконтаэдра, а также для двойственных им архимедовых тел.
Как и для курносого куба, при описании метрических свойств и углов пентагонального икоситетраэдра важную роль играет константа трибоначчи:

Если три «коротких» стороны грани имеют длину , то две «длинных» стороны имеют длину
Площадь поверхности и объём многогранника при этом выражаются как
Радиус вписанной сферы (касающейся всех граней многогранника в их инцентрах) при этом будет равен
радиус полувписанной сферы (касающейся всех рёбер) —
радиус окружности, вписанной в грань —
диагональ грани, параллельная одной из «коротких» сторон —
Описать около пентагонального икоситетраэдра сферу — так, чтобы она проходила через все вершины, — невозможно.
Все четыре тупых угла грани равны острый угол грани (между «длинными» сторонами) равен
Двугранный угол при любом ребре одинаков и равен
Remove ads
Ссылки
- Weisstein, Eric W. Пентагональный икоситетраэдр (англ.) на сайте Wolfram MathWorld.
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads