Лучшие вопросы
Таймлайн
Чат
Перспективы
Хиральность (математика)
свойство, различающее некоторые фигуры и их зеркальные отражения Из Википедии, свободной энциклопедии
Remove ads
Хира́льность (англ. chirality, от др.-греч. χείρ — рука) — свойство геометрической фигуры, состоящее в отсутствии её совместимости со своей идеальной зеркальной копией[1][2]. Другими словами, хиральность — отсутствие зеркальной симметрии у геометрической фигуры[2].

Ахиральность — наличие зеркальной симметрии у геометрической фигуры[2].
Произвольный невырожденный неравнобедренный треугольник — одна из простейших хиральных фигур на плоскости. Такой треугольник нельзя наложить на его зеркально симметричное изображение посредством комбинацией параллельных переносов и поворотов плоскости. Произвольный равнобедренный треугольник ахирален на плоскости[2].
Однако хиральные треугольники на плоскости ахиральны в трёхмерном пространстве, поскольку всегда существует комбинация параллельного переноса и поворота трёхмерного пространства, идеально накладывающие треугольник на его зеркально симметричное изображение в плоскости[2].
Хиральная фигура и её зеркальный образ называют энантиоморфами. Слово «энантиоморф» происходит от др.-греч. εναντιος (энантиос) — «противоположный», и μορφη (морфе) — «форма». Нехиральный объект также называется амфихиральным.
Винтовая линия (а также витая пряжа, штопор, пропеллер и т. п.) и лента Мёбиуса — это трёхмерные хиральные объекты. Фигурки тетрамино в форме букв J, L, S и Z из популярной игры «Тетрис» также обладают хиральностью, но только в двумерном пространстве.
Некоторым хиральным объектам, таким как винт, можно приписать правую (левую) ориентацию, в соответствии с правилом правой руки (правилом левой руки).
Remove ads
Хиральность и группы симметрии
Фигура ахиральна тогда и только тогда, когда её группа симметрий содержит хотя бы одну изометрию, меняющую ориентацию. В евклидовой геометрии любая изометрия имеет вид , где — ортогональная матрица, а — вектор. Определитель матрицы равен 1 или −1. Если он равен −1, то изометрия меняет ориентацию, в противном случае она сохраняет ориентацию.
Remove ads
Хиральность в трёхмерном пространстве
Суммиров вкратце
Перспектива
В трёхмерном пространстве любая фигура, обладающая плоскостью симметрии или центром симметрии ахиральна. Однако, существуют ахиральные фигуры, не обладающие ни центром, ни плоскостью симметрии, например:
Эта фигура инвариантна относительно меняющего ориентацию преобразования и поэтому ахиральна, но не обладает ни плоскостью, ни центром симметрии. Фигура
также ахиральна, так как начало координат является для неё центром симметрии, но у неё нет плоскости симметрии.
Remove ads
Хиральность в двух измерениях
В двумерном пространстве любая фигура, обладающая осью симметрии, является ахиральной. Можно показать, что любая ограниченная ахиральная фигура обладает осью симметрии. Для бесконечных фигур это не обязательно выполняется. Рассмотрим следующий (конечный) рисунок:
> > > > > > > > > > > > > > > > > > > >
Это хиральная фигура, так как она не совпадает со своим зеркальным изображением:
> > > > > > > > > > > > > > > > > > > >
Но если продолжить его вправо и влево до бесконечности, то получится неограниченная ахиральная фигура, не обладающая осью симметрии. Её группа симметрий — это группа бордюра, порождённая единственным скользящим отражением.
Теория узлов
Узел называется ахиральным, если его можно непрерывно деформировать в его зеркальный образ, в противном случае его называют хиральным. Например, незаузлённый узел и «восьмёрка» ахиральны, в то время как трилистный узел хирален.
См. также
Примечания
Источники
Ссылки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads