Лучшие вопросы
Таймлайн
Чат
Перспективы
Симметричная матрица
квадратная матрица, элементы которой симметричны относительно главной диагонали Из Википедии, свободной энциклопедии
Remove ads
Симметричной (Симметрической) называют квадратную матрицу, элементы которой симметричны относительно главной диагонали. Более формально, симметричной называют такую матрицу , что .
Это означает, что она равна её транспонированной матрице:
Remove ads
Примеры
Remove ads
Свойства
Суммиров вкратце
Перспектива
Симметричная матрица всегда квадратная.
Для любой симметричной матрицы A с вещественными элементами справедливо следующее:
- она имеет вещественные собственные значения
- её собственные векторы, соответствующие разным собственным значениям, ортогональны друг другу:
- из её собственных векторов всегда можно составить ортонормированный базис
- матрицу A можно привести к диагональному виду: , где — ортогональная матрица, столбцы которой содержат ортонормированный базис из собственных векторов, а D — диагональная матрица с собственными значениями матрицы A на диагонали.
- Если у симметричной матрицы A единственное собственное значение , то она имеет диагональный вид: , где — единичная матрица, в любом базисе.
- Для симметричной матрицы любая конгруэнтная матрица также является симметричной, то есть
Remove ads
Положительно (отрицательно) определённые матрицы
Симметричная матрица размерностью называется положительно определённой если выполняется
Условие отрицательно, неположительно и неотрицательно определённой матрицы формулируется аналогично с соответствующим изменением знака неравенства.
Для выяснения характера определённости матрицы может использоваться критерий Сильвестра.
См. также
Литература
- Беллман Р. Введение в теорию матриц. — М.: Мир, 1969 (djvu).
- Гантмахер Ф. Р. Теория матриц. — 5-е изд. — М.: Физматлит, 2004. — 560 с. — ISBN 5-9221-0524-8.; (2-е изд.). — М.: Наука, 1966 (djvu).
- Голуб Дж. (Gene H. Golub), Ван Лоун Ч. (Charles F. Van Loan) Матричные вычисления. — М.: Мир, 1999. — 548 с. — ISBN 5-03-002406-9
- Курош А. Г. Курс высшей алгебры. — 9-е изд. — М.: Наука, 1968. — 432 с.
Remove ads
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads