Лучшие вопросы
Таймлайн
Чат
Перспективы

Степенная функция

Из Википедии, свободной энциклопедии

Remove ads

Степенна́я фу́нкцияфункция , где (показатель степени) — некоторое вещественное число[1][2]. К степенным часто относят и функцию вида , где — некоторый (ненулевой) коэффициент[3]. Существует также комплексное обобщение степенной функции.

Степенная функция является частным случаем многочлена. На практике показатель степени почти всегда является целым или рациональным числом.

Remove ads

Вещественная функция

Суммиров вкратце
Перспектива

Область определения

Для целых положительных показателей степенную функцию можно рассматривать на всей числовой прямой, тогда как для целых отрицательных функция не определена в нуле (нуль является её особой точкой)[4].

Для не целого показателя степенная функция определена только при Если то функция определена и в нуле[4].

Целочисленный показатель степени

Графики степенной функции при целочисленном показателе :

При нечётном графики центрально-симметричны относительно начала координат, в котором имеет точку перегиба. При чётном степенная функция чётна: её график симметричен относительно оси ординат[5].

Графики степенной функции при натуральном показателе называются параболами порядка . При чётном функция всюду неотрицательна (см. графики). При получается функция , называемая линейной функцией или прямой пропорциональной зависимостью[3][5].

Графики функций вида , где — натуральное число, называются гиперболами порядка . При нечётном оси координат являются асимптотами гипербол. При чётном асимптотами являются ось абсцисс и положительное направление оси ординат (см. графики)[6]. При показателе получается функция , называемая обратной пропорциональной зависимостью[3][5].

При функция вырождается в константу:

Рациональный показатель степени

Возведение в рациональную степень определяется формулой:

Если , то функция представляет собой арифметический корень степени :

Пример: из третьего закона Кеплера непосредственно вытекает, что период обращения планеты вокруг Солнца связан с большой полуосью её орбиты соотношением: (полукубическая парабола).

Свойства

Монотонность

В интервале функция монотонно возрастает при и монотонно убывает при Значения функции в этом интервале положительны[3].

Аналитические свойства

Функция непрерывна и неограниченно дифференцируема во всех точках, в окрестности которых она определена[4].

Производная функции: .

Ноль, вообще говоря, является особой точкой. Так, если , то -я производная в нуле не определена. Например, функция определена в нуле и в его правой окрестности, но её производная в нуле не определена.

Неопределённый интеграл[4]:

  • Если , то
  • При получаем:
Remove ads

Таблица значений малых степеней

Подробнее n, n2 ...
Remove ads

Комплексная функция

Суммиров вкратце
Перспектива

Степенная функция комплексного переменного в общем виде определяется формулой[7]:

Здесь показатель степени — некоторое комплексное число. Значение функции, соответствующее главному значению логарифма, называется главным значением степени. Например, значение равно где — произвольное целое, а его главное значение есть

Комплексная степенная функция обладает значительными отличиями от своего вещественного аналога. В силу многозначности комплексного логарифма она, вообще говоря, также имеет бесконечно много значений. Однако два практически важных случая рассматриваются отдельно.

  1. При натуральном показателе степени функция однозначна и n-листна[8].
  2. Если показатель степени — положительное рациональное число, то есть (несократимая) дробь , то у функции будет различных значений[7].
Remove ads

См. также

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads