Лучшие вопросы
Таймлайн
Чат
Перспективы

Теорема Гельфонда — Шнайдера

Из Википедии, свободной энциклопедии

Remove ads

Теорема Гельфонда—Шнайдера — теорема в теории чисел, которая устанавливает трансцендентность большого класса чисел и тем самым решает (утвердительно) Седьмую проблему Гильберта. Была доказана независимо в 1934 году советским математиком Александром Гельфондом[1] и немецким математиком Теодором Шнайдером[2].

Формулировка

Суммиров вкратце
Перспектива

Если алгебраические числа, причём не ноль и не единица, а иррационально, то любое значение трансцендентное число.

Эквивалентные формулировки для логарифмов (основание логарифма выбирается произвольно)[3]:

Если алгебраические числа, не равные нулю или единице, то — либо рациональное, либо трансцендентное число.

Если линейно независимы над полем рациональных чисел, то они линейно независимы и над полем алгебраических чисел.

Про обобщение последней формулировки см. статью Теория трансцендентных чисел.

Пояснения

Из примера, с учётом теоремы, также очевидно, что — трансцендентное число.
Remove ads

Следствия

Суммиров вкратце
Перспектива

Из теоремы вытекает трансцендентность некоторых важных математических констант.

Remove ads

См. также

Примечания

Литература

Ссылки

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads