Лучшие вопросы
Таймлайн
Чат
Перспективы
Теорема Уитни о вложении
Из Википедии, свободной энциклопедии
Remove ads
Теорема Уитни о вложении — утверждение дифференциальной топологии, согласно которому произвольное гладкое -мерное многообразие со счётной базой допускает гладкое вложение в -мерное евклидово пространство. Установлено Хасслером Уитни в 1938 году.
Этот результат оптимален, например, если — степень двойки, то -мерное проективное пространство невозможно вложить в -мерное евклидово пространство.
Remove ads
Схема доказательства
Случаи и устанавливаются напрямую.
Для доказательства случая используется факт, что гладкое отображение общего положения является погружением с конечным количеством точек трансверсального самопересечения.
Избавиться от этих точек самопересечения можно, несколько раз применив трюк Уитни. Он состоит в следующем. Возьмем точки самопересечения отображения , имеющие разные знаки. Возьмем точки , для которых и . Соединим и гладкой кривой . Соединим и гладкой кривой . Тогда есть замкнутая кривая в . Далее построим отображение с границей . В общем положении, является вложением и (как раз здесь используется то, что ). Тогда можно изотопировать в маленькой окрестности диска так, чтобы эта пара точек самопересечения исчезла. В последнее утверждение легко поверить, представив картинку для (в которой свойства диска оказались выполнены случайно, а не по общему положению). Аккуратное доказательство приведено в пункте 22.1 книги Прасолова[1].
Приведем набросок другого способа избавиться от точек самопересечения отображения общего положения . Он основан на важной идее поглощения. (Иногда данное применение этой другой идеи ошибочно называют трюком Уитни.) Возьмем точку самопересечения отображения . Возьмем точки , для которых . Соединим и гладкой кривой . Тогда есть замкнутая кривая в . Далее построим отображение с границей . В общем положении, является вложением и (как раз здесь используется то, что ). Теперь можно изотопировать в маленькой окрестности диска так, чтобы эта точка самопересечения исчезла. См. детали и обобщения в книге Рурке и Сандерсона[2] и параграфе 8 обзора Скопенкова[3]. Это рассуждение обычно проводят в кусочно-линейной категории. В гладкой же категории (как здесь) для последней деформации нужно использовать теорему Хефлигера о незаузленности сфер (см. ).
Remove ads
Вариации и обобщения
Пусть есть гладкое -мерное многообразие, .
- Если не является степенью двойки, тогда существует вложение в
- может быть погружено в
- Более того может быть погружено в , где есть число единиц в двоичном представлении .
- Последний результат оптимален, для любого можно построить -мерное многообразие (произведение вещественных проективных пространств), которое невозможно погрузить в .
- Более того может быть погружено в , где есть число единиц в двоичном представлении .
- Теорема Мостоу — Паласа[англ.] даёт эквивариантный вариант теоремы Уитни о вложении.[4][5]
Remove ads
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads