Векторска анализа

From Wikipedia, the free encyclopedia

Remove ads

Векторска анализа је грана математике која проучава диференцијални и интегрални рачун над векторским пољима, primarily in 3-dimensional Euclidean space The term "vector calculus" is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.

Највећу примену у математици налази у диференцијалној геометрији и парцијалним диференцијалним једначинама, а од осталих грана науке, највише се користи у физици, посебно у електродинамици, механици флуида, гравитацији и сл.

Remove ads

Основни објекти

Скаларна поља

Скаларно поље придружује скаларну вредност свакој тачки у простору. Скалар је математички број који представља физичку величину. Примери скаларних поља у апликацијама укључују дистрибуцију температуре у простору, расподелу притиска у флуиду и квантна поља са спином нула (позната као скаларни бозони), као што је Хигсово поље. Ова поља су предмет теорије скаларног поља.

Векторска поља

Векторско поље је додељивање вектора свакој тачки у простору.[1] Векторско поље у равни, на пример, може се визуализовати као колекција стрелица са датом величином и смером, свака везана за тачку у равни. Векторска поља се често користе за моделовање, на пример, брзине и правца флуида који се креће кроз простор, или јачине и смера неке силе, као што је магнетна или гравитациона сила, како се мења од тачке до тачке. Ово се може користити, на пример, за израчунавање рада обављеног дуж линије.

Вектори и псеувектори

У напреднијим третманима, даље се разликују псеудовекторска поља и псеудоскаларна поља, која су идентична векторским пољима и скаларним пољима, осим што мењају предзнак под мапом која мења оријентацију: на пример, ротор векторског поља је псеудовекторско поље, а ако се одражава векторско поље, ротор је усмерен у супротном смеру. Ова разлика је разјашњена и разрађена у геометријској алгебри, као што је описано у наставку.

Remove ads

Векторска алгебра

Алгебарске (недиференцијалне) операције у векторском рачуну називају се векторском алгебром, дефинишу се за векторски простор и затим се глобално примењују на векторско поље. Основне алгебарске операције се састоје од:[2]

Више информација , ...

Такође се често користе два трострука производа:

Више информација , ...
Remove ads

Оператори и теореме

Диференцијални оператори

Векторски рачун проучава различите диференцијалне операторе дефинисане на скаларним или векторским пољима, који се обично изражавају у виду оператора (), такође познатог као „набла」. Три основна векторска оператора су:[3][4]

Више информација , ...

Такође се често користе два Лапласова оператора:

Више информација , ...

Квантитет који се назива Јакобијанска матрица је користан за проучавање функција када су домен и опсег функције мултиваријабилни, као што је промена променљивих током интеграције.

Теореми интеграла

Три основна векторска оператора имају одговарајуће теореме које генерализују основну теорему рачуна на више димензије:

Више информација , ...

У две димензије, теореме о дивергенцији и увијању своде се на Гринову теорему:

Више информација , у ...
Remove ads

Референце

Литература

Спољашње везе

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads