Векторска анализа
From Wikipedia, the free encyclopedia
Remove ads
Векторска анализа је грана математике која проучава диференцијални и интегрални рачун над векторским пољима, primarily in 3-dimensional Euclidean space The term "vector calculus" is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.
Највећу примену у математици налази у диференцијалној геометрији и парцијалним диференцијалним једначинама, а од осталих грана науке, највише се користи у физици, посебно у електродинамици, механици флуида, гравитацији и сл.
Remove ads
Основни објекти
Скаларна поља
Скаларно поље придружује скаларну вредност свакој тачки у простору. Скалар је математички број који представља физичку величину. Примери скаларних поља у апликацијама укључују дистрибуцију температуре у простору, расподелу притиска у флуиду и квантна поља са спином нула (позната као скаларни бозони), као што је Хигсово поље. Ова поља су предмет теорије скаларног поља.
Векторска поља
Векторско поље је додељивање вектора свакој тачки у простору.[1] Векторско поље у равни, на пример, може се визуализовати као колекција стрелица са датом величином и смером, свака везана за тачку у равни. Векторска поља се често користе за моделовање, на пример, брзине и правца флуида који се креће кроз простор, или јачине и смера неке силе, као што је магнетна или гравитациона сила, како се мења од тачке до тачке. Ово се може користити, на пример, за израчунавање рада обављеног дуж линије.
Вектори и псеувектори
У напреднијим третманима, даље се разликују псеудовекторска поља и псеудоскаларна поља, која су идентична векторским пољима и скаларним пољима, осим што мењају предзнак под мапом која мења оријентацију: на пример, ротор векторског поља је псеудовекторско поље, а ако се одражава векторско поље, ротор је усмерен у супротном смеру. Ова разлика је разјашњена и разрађена у геометријској алгебри, као што је описано у наставку.
Remove ads
Векторска алгебра
Алгебарске (недиференцијалне) операције у векторском рачуну називају се векторском алгебром, дефинишу се за векторски простор и затим се глобално примењују на векторско поље. Основне алгебарске операције се састоје од:[2]
Такође се често користе два трострука производа:
Remove ads
Оператори и теореме
Диференцијални оператори
Векторски рачун проучава различите диференцијалне операторе дефинисане на скаларним или векторским пољима, који се обично изражавају у виду оператора (), такође познатог као „набла」. Три основна векторска оператора су:[3][4]
Такође се често користе два Лапласова оператора:
Квантитет који се назива Јакобијанска матрица је користан за проучавање функција када су домен и опсег функције мултиваријабилни, као што је промена променљивих током интеграције.
Теореми интеграла
Три основна векторска оператора имају одговарајуће теореме које генерализују основну теорему рачуна на више димензије:
У две димензије, теореме о дивергенцији и увијању своде се на Гринову теорему:
Remove ads
Референце
Литература
Спољашње везе
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads