நட்பார்ந்த எண்கள்
From Wikipedia, the free encyclopedia
Remove ads
எண் கோட்பாட்டில், நட்பார்ந்த எண்கள் (friendly numbers) என்பவை, ஒவ்வொன்றின் வகுஎண்களின் கூட்டுத்தொகை மற்றும் அந்த எண்ணின் விகிதங்கள் சமமாகவுள்ள இரண்டு அல்லது அதற்கு மேற்பட்ட இயல் எண்களாகும். இந்த விகிதமானது மிகைமைச் சுட்டெண் எனப்படுகிறது. சம மிகைமைச் சுட்டெண்கொண்ட இரு இயலெண்கள் "நட்பார்ந்த சோடி" (friendly pair) எனவும், n எண்கள் "நட்பார்ந்த n-வரிசை எண்கள் (friendly n-tuple) என அழைக்கப்படுகிறன.
ஒன்றுக்கொன்று "நட்பார்ந்திருத்தல்" ஒரு சமான உறவாகும். இந்த உறவினால் நேர்ம இயலெண்களின் கணமானது, ஒன்றுக்கொன்று நட்பார்ந்த எண்களடங்கிய சமானப் பகுதிகளாக அமையும் குழுமங்களாகப் பிரிக்கப்படுகிறது.
நட்பார்ந்த சோடியில் இடம்பெறாத எந்தவொரு எண்ணும் "தனி எண்" (solitary number) எனப்படும்.
ஒரு விகிதமுறு எண் n இன் மிகைமைச் சுட்டெண் σ(n) / n; இதிலுள்ள σ ஆனது, வகுஎண்களின் கூட்டுத்தொகைச் சார்பைக் குறிக்கிறது. n , m (m ≠ n) இரண்டும் நட்பார்ந்த எண்கள் எனில்:
- σ(m) / m = σ(n) / n.
- 1 முதல் 5 வரை தனி எண்கள்; மிகச் சிறிய நட்பார்ந்த எண் '6' .
- 6, 28 இரண்டும் நட்பார்ந்த சோடியாகும். இவை இரண்டின் மிகைமைச் சுட்டெண் = 2.
- σ(6) / 6 = (1+2+3+6) / 6 = 2,
- σ(28) / 28 = (1+2+4+7+14+28) / 28 = 2.
மிகைமைச் சுட்டெண் 2 கொண்ட எண்கள், நிறைவெண்கள்.
இசைவான எண்கள், இணக்க எண்கள் இரண்டும் நட்பார்ந்த எண்களின் பெயரோடு ஒத்தும் வகுஎண் சார்புகளையும் கொண்டுமிருந்தாலும் இவற்றுக்கிடையே எந்தவொரு தொடர்பும் கிடையாது.
Remove ads
எடுத்துக்காட்டுகள்
- 30, 140 ஆகிய இரு எண்களும் ஒரு நட்பார்ந்த சோடிகளாகும். இவற்றின் மிகைமைச் சுட்டெண்கள் சமமானவை.:[1]
- 2480, 6200, 40640 ஆகிய மூன்றின் மிகைமைச் சுட்டெண்களும் 12/5 ஆக இருப்பதால் இவையும் 30, 140 உடன் சேர்ந்து ஒரு நட்பார்ந்த குழுவாக அமைகின்றன.
- ஒற்றையெண்களானான நட்பார்ந்த சோடிகளுக்கு ஒரு எடுத்துக்காட்டு: 135, 819 (இவற்றின் மிகைமைச் சுட்டெண் 16/9 (குறைவெண்)).
- ஒரு ஒற்றையெண், மற்றொரு இரட்டை எண்ணுடன் நட்பார்ந்ததாகவும் இருக்கும்.
ஆகிய இரட்டை எண்களுடன் நட்பார்ந்த ஒற்றை எண்: 544635 (மிகைமைச் சுட்டெண்: 16/7).
- இரட்டை எண்களுடன் நட்பானதாகவுள்ள ஒற்றையெண்ணானது அவ்விரட்டை எண்களைவிடச் சிறியதாகவும் இருக்கலாம்.
- எடுத்துக்காட்டு:
- 84729645, 155315394 ("மிகைமைச் சுட்டெண்:" 896/351);
- 6517665, 14705145, 2746713837618 ("மிகைமைச் சுட்டெண்" 64/27).
- ஒரு சதுர எண் நட்பார்ந்த எண்ணாக இருக்கலாம்.
- எடுத்துக்காட்டு:
- சதுர எண் 693479556 (26334 இன் வர்க்கம்), 8640 ஆகிய இரண்டும் நட்பார்ந்த எண்கள் (மிகைமைச் சுட்டெண்: 127/36)
அட்டவணை
கீழுள்ள அட்டவணையில் நட்பார்ந்த எண்களாக நிறுவப்பட்டவை நீல நிறத்திலும் (OEIS-இல் வரிசை A074902) , தனி எண்களாகளாக நிறுவப்பட்டவை சிவப்பு நிறத்திலும் (OEIS-இல் வரிசை A095739) , n உம் அதன் உம் சார்பகா முழுஎண்களாக உள்ள எண்கள் நிறமற்றும் (OEIS-இல் வரிசை A014567) தரப்பட்டுள்ளன (அவை தனி எண்களென அறியப்பட்டிருந்தாலும்). வகையறியப்படாத இதர எண்கள் மஞ்சள் நிறத்திலுள்ளன.
Remove ads
தனி எண்கள்
வேறெந்தவொரு எண்ணுடனும் நட்பாக இல்லாத எண்கள் "தனி எண்கள்" என்ற குழுவாக அமையும்.
- n, σ(n) இரண்டும் சார்பகா எண்களாக இருந்தால், அதாவது அவற்றின் மீப்பெரு பொது வகுத்தி 1 எனில், n இன் மிகைமைச் சுட்டெண் σ(n)/n, ஒரு குறைக்கவியலாப் பின்னமாகும். எனவே, n இன் மிகைமைச் சுட்டெண் வேறு எந்தவொரு எண்ணின் மிகைமைச் சுட்டெணுடனும் சமமாக இருக்க முடியாது. இதனால் n ஒரு தனி எண்ணாகும்.
தனி எண்களின் தொடர்வரிசை:
- 1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 36, 37, 39, 41, 43, 47, 49, 50, 53, 55, 57, 59, 61, 63, 64, 65, 67, 71, 73, 75, 77, 79, 81, 83, 85, 89, 93, 97, 98, 100, 101, 103, 107, 109, 111, 113, 115, 119, 121, 125, 127, 128, 129, 131, 133, ....(OEIS-இல் வரிசை A014567)
.
அனைத்துப் பகா எண்களும் அவற்றின் அடுக்குகளும் தனி எண்களாக இருக்கும்.
- p ஒரு பகா எண் எனில், அதன் σ(p) = p + 1, இம்மதிப்பு p உடன் சார்பகா எண்ணாக இருக்கும். எனவே p ஒரு தனி எண்.
ஒரு எண் நட்பானதா அல்லது தனியானதா என்பதைத் தீர்மானிக்கும் எந்தவொரு பொதுமுறையும் இல்லை. நட்பானதா அல்லது தனியானதா என்று வகைப்படுத்தப்படாத மிகச் சிறிய எண் 10. இது தனி எண் என்று அனுமானிக்கப்பட்டுள்ளது; இந்த அனுமானம் தவறென்றால், அதனது நட்பெண் குறைந்தபட்சம் ஆக இருக்க வேண்டும்.[2][3] . பெரிய நட்பெண்களைக் கொண்டுள்ள சிறிய எண்களுமுள்ளன. எடுத்துக்காட்டாக, 24 உடன் நட்பான எண் 91,963,648.[2][3]
Remove ads
பெரிய குழுக்கள்
ஒன்றுக்கொன்று நட்பானவையாக உள்ள எண்களின் பெரிய குழுக்களின் எண்ணிக்கை முடிவற்றதா இல்லையா என்பது விடையறியப்படாத கூற்றாகவே உள்ளது. நிரைவெண்கள் ஒரு நட்பார்ந்த எண்களின் குழுவை உருவாக்குகின்றன. நிறைவெண்களின் தொடர்வரிசை முடிவுறாதவொன்றாக அனுமானம் செய்யப்பட்டுகிறது; குறைந்தபட்சம் மெர்சென் பகாத்தனிகளின் என்ணிக்கையளவு நிறையெண்கள் உண்டு; ஆனால் இக்கூற்று நிறுவப்படவில்லை. திசம்பர் 2022 வரையிலான அறிதலின்படி , 51 நிறைவெண்கள் கண்டறியப்பட்டுள்ளன. இவற்றுள் மிகப் பெரிய எண்ணானது பதின்மம்க் குறியீட்டில் 49 மில்லியன் இலக்கங்களைக் கொண்டது. பெருக்கச் செவ்விய எண்கள் நட்பார்ந்த குழுவாக அமைகின்றன. இவற்றின் மிகைமைச் சுட்டெண் ஒரு முழு எண்ணாக இருக்கும். திசம்பர் 2022 கணக்கீட்டின்படி, மிகைமைச் சுட்டெண்ணை 9 ஆகக் கொண்ட குழுவில் அறியப்பட்ட 2130 பெருக்கச் செவ்விய எண்கள் உள்ளன.[4] சில பெருக்கச் செவ்விய எண்களைக்கொண்ட நட்பார்ந்த குழுக்கள் அதிகளவில் பெரியதாக இருந்தாலும், அக்குழுக்கள் முடிவுற்ற தொடர்வரிசைகளாகவே அனுமானிக்கப்படுகின்றன.
குறிப்புகள்
மேற்கோள்கள்
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads