Топ питань
Часова шкала
Чат
Перспективи

Алгебра Гопфа

біалгебра, що допускає антипод З Вікіпедії, вільної енциклопедії

Remove ads

Алгебра Гопфа — асоціативна алгебра з одиницею, що є також коасоціативною коалгеброю з коодиницею і, таким чином, біалгеброю з антигомоморфізмом спеціального виду. Названа на честь Гайнца Гопфа.

Алгебри Гопфа зустрічаються в алгебраїчній топології, де вони виникли у зв'язку з концепцією H-простору, в теорії групових схем, в теорії груп (завдяки концепції групового кільця), і в багатьох інших розділах математики, що робить їх одним з найвідоміших прикладів біалгебри. Алгебри Гопфа також вивчаються як самостійний предмет, у зв'язку з великою кількістю певних класів алгебр Гопфа і проблем їх класифікації.

Remove ads

Означення

Узагальнити
Перспектива

Алгебра Гопфа — асоціативна і коасоціативна біалгебра H над полем разом з -лінійним відображенням (що називається антиподом) таким, що наступна діаграма є комутативною:

Thumb

Тут Δкодобуток біалгебри, — добуток алгебри, η — одиниця алгебри й εкоодиниця.

У позначеннях Свідлера, ця властивість записується як:

.

Наведене означення можна узагальнити для алгебр над кільцями (досить в означенні замінити поле на комутативне кільце ).

Означення алгебри Гопфа є двоїстим самому собі (це відображено в симетрії наведеної діаграми), зокрема, якщо можна задати двоїсту алгебру до H (це завжди можливо якщо H є скінченновимірним простором) то вона автоматично є алгеброю Гопфа.

Структурні константи

Зафіксувавши базис алгебри як векторного простору, алгебру Гопфа можна описати за допомогою структурних констант

для множення:

для кодобутку:

для антипода:

Асоціативність алгебри тоді вимагає рівності

для коасоціативності має виконуватися рівність

Також для структурних констав має бути

Remove ads

Властивості антипода

В означенні алгебр Гопфа для антипода S часто ставиться вимога існування K-лінійного оберненого відображення, яке автоматично існує у скінченновимірному випадку, або якщо алгебра H є комутативною, кокомутативною або, більш загально, квазітрикутною.

Взагалі кажучи, S є антигомоморфізмом [1], так S2 - гомоморфізм, який буде автоморфізмом, якщо S є оборотним.

Якщо , то алгебра Гопфа, як кажуть, є інволютивною (основним прикладом інволютивної алгебри є *-алгебра). Якщо H — скінченновимірна напівпроста алгебра над полем характеристики нуль, що є комутативною або кокомутативною, то вона є інволютивною.

Якщо біалгебра B допускає антипод S, то S є єдиним (довільна біалгебра допускає щонайбільше 1 структуру алгебри Гопфа).[2]

Антипод є аналогом відображення інверсії на групі, яке відображає у . [3]

Remove ads

Підалгебри Гопфа

Узагальнити
Перспектива

Підалгебра A алгебри Гопфа H є підалгеброю Гопфа, якщо вона є підкоалгеброю H і антипод S відображає A в A. Іншими словами, підалгебра Гопфа A - це підпростір в алгебрі Гопфа, замкнутий щодо множення, кодобутку й антипода. Теорема Ніколса — Зеллер (Nichols - Zoeller) про вільність стверджує, що якщо H є скінченновимірною, то натуральний A-модуль H є вільним модулем скінченного рангу, що дає узагальнення теореми Лагранжа для підгруп. Як наслідок цього, підалгебра Гопфа напівпростої скінченновимірної алгебри Гопфа автоматично є напівпростою.

Підалгебра Гопфа A називається правою нормальною підалгеброю алгебри Гопфа H, якщо вона задовольняє умові стабільності, для всіх h з H, де приєднане відображення задане як для всіх a з A і h з H. Підалгебра Гопфа K є лівою нормальною в H якщо вона інваріантна при лівому приєднаному відображенню для всіх k з K. Обидві умови нормальності є еквівалентними, якщо антипод S є бієктивним. У цьому випадку A називається нормальною підалгеброю Гопфа.

Нормальна підалгебра Гопфа A в H задовольняє умові рівності підмножин: , де позначає ядро коодиниці K. З цієї умови нормальності випливає, що — ідеал алгебри Гопфа H (тобто є ідеалом алгебри в ядрі коодиниці, коідеалом коалебри й стійким під дією антипода). Як наслідок, можна визначити факторалгебру Гопфа і епіморфізм , аналогічно відповідним конструкціям нормальних підгруп і факторгруп у теорії груп. [4]

Remove ads

Приклади

Узагальнити
Перспектива
Більше інформації Залежить від, Кодобуток ...
Remove ads

Когомології груп Лі

Узагальнити
Перспектива

Алгебра когомологій групи Лі — алгебра Гопфа: множення задано -добутком, а кодобуток

множенням групи .

Це спостереження було фактично джерелом поняття алгебри Гопфа. Використовуючи цю структуру, Гопф довів структурну теорему для алгебри когомологій груп Лі.

Теорема Гопфа [9] Нехай A — скінченновимірна, суперкомутативна, кокомутативна алгебра Гопфа над полем характеристики 0. Тоді A (як алгебра) є вільною зовнішньою алгеброю з генераторами непарного степеня.

Remove ads

Квантові групи

Всі приклади вище є або комутативними (тобто множення є комутативним) або кокомутативними (тобто Δ = T ∘ Δ, де T : H ⊗ HH ⊗ H — перестановка тензорних множників, задана як T(x ⊗ y) = y ⊗ x). Іншими цікавими прикладами алгебр Гопфа — деякі деформації або «квантування» прикладу 4, які не є ні комутативними, ні кокомутативними. Ці алгебри Гопфа часто називають квантовими групами.

Ідея полягає в наступному: звичайна алгебрична група може бути описана в термінах алгебри Гопфа регулярних функцій. Ми можемо тоді думати про деформації цієї алгебри Гопфа як про опис деякої «квантованої» алгебричної групи (хоча вона і не є алгебричною групою). Багато властивостей алгебричних груп, а також конструкції з ними мають свої аналоги для деформованих алгебр Гопфа. Звідси назва «квантова група».

Remove ads

Аналогія з групами

Аксіоми груп можна подати за допомогою тих же діаграм (еквівалентностей, операцій) що й алгебри Гопфа, де H — множина, а не модуль. У цьому випадку:

  • кільце R замінюється множиною з 1 елемента
  • є природна коодиниця (відображення в єдиний елемент)
  • є природний кодобуток (діагональне відображення)
  • одиниця — нейтральний елемент групи
  • множення — множення в групі
  • антипод — обернений елементу в групі.

В цьому сенсі групи можна розглядати як алгебри Гопфа над полем з одного елемента. [10]

Remove ads

Примітки

Див. також

Література

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads