Топ питань
Часова шкала
Чат
Перспективи
Алгебра Гопфа
біалгебра, що допускає антипод З Вікіпедії, вільної енциклопедії
Remove ads
Алгебра Гопфа — асоціативна алгебра з одиницею, що є також коасоціативною коалгеброю з коодиницею і, таким чином, біалгеброю з антигомоморфізмом спеціального виду. Названа на честь Гайнца Гопфа.
Алгебри Гопфа зустрічаються в алгебраїчній топології, де вони виникли у зв'язку з концепцією H-простору, в теорії групових схем, в теорії груп (завдяки концепції групового кільця), і в багатьох інших розділах математики, що робить їх одним з найвідоміших прикладів біалгебри. Алгебри Гопфа також вивчаються як самостійний предмет, у зв'язку з великою кількістю певних класів алгебр Гопфа і проблем їх класифікації.
Remove ads
Означення
Узагальнити
Перспектива
Алгебра Гопфа — асоціативна і коасоціативна біалгебра H над полем разом з -лінійним відображенням (що називається антиподом) таким, що наступна діаграма є комутативною:
Тут Δ — кодобуток біалгебри, ∇ — добуток алгебри, η — одиниця алгебри й ε — коодиниця.
У позначеннях Свідлера, ця властивість записується як:
- .
Наведене означення можна узагальнити для алгебр над кільцями (досить в означенні замінити поле на комутативне кільце ).
Означення алгебри Гопфа є двоїстим самому собі (це відображено в симетрії наведеної діаграми), зокрема, якщо можна задати двоїсту алгебру до H (це завжди можливо якщо H є скінченновимірним простором) то вона автоматично є алгеброю Гопфа.
Структурні константи
Зафіксувавши базис алгебри як векторного простору, алгебру Гопфа можна описати за допомогою структурних констант
для множення:
для кодобутку:
для антипода:
Асоціативність алгебри тоді вимагає рівності
для коасоціативності має виконуватися рівність
Також для структурних констав має бути
Remove ads
Властивості антипода
В означенні алгебр Гопфа для антипода S часто ставиться вимога існування K-лінійного оберненого відображення, яке автоматично існує у скінченновимірному випадку, або якщо алгебра H є комутативною, кокомутативною або, більш загально, квазітрикутною.
Взагалі кажучи, S є антигомоморфізмом [1], так S2 - гомоморфізм, який буде автоморфізмом, якщо S є оборотним.
Якщо , то алгебра Гопфа, як кажуть, є інволютивною (основним прикладом інволютивної алгебри є *-алгебра). Якщо H — скінченновимірна напівпроста алгебра над полем характеристики нуль, що є комутативною або кокомутативною, то вона є інволютивною.
Якщо біалгебра B допускає антипод S, то S є єдиним (довільна біалгебра допускає щонайбільше 1 структуру алгебри Гопфа).[2]
Антипод є аналогом відображення інверсії на групі, яке відображає у . [3]
Remove ads
Підалгебри Гопфа
Узагальнити
Перспектива
Підалгебра A алгебри Гопфа H є підалгеброю Гопфа, якщо вона є підкоалгеброю H і антипод S відображає A в A. Іншими словами, підалгебра Гопфа A - це підпростір в алгебрі Гопфа, замкнутий щодо множення, кодобутку й антипода. Теорема Ніколса — Зеллер (Nichols - Zoeller) про вільність стверджує, що якщо H є скінченновимірною, то натуральний A-модуль H є вільним модулем скінченного рангу, що дає узагальнення теореми Лагранжа для підгруп. Як наслідок цього, підалгебра Гопфа напівпростої скінченновимірної алгебри Гопфа автоматично є напівпростою.
Підалгебра Гопфа A називається правою нормальною підалгеброю алгебри Гопфа H, якщо вона задовольняє умові стабільності, для всіх h з H, де приєднане відображення задане як для всіх a з A і h з H. Підалгебра Гопфа K є лівою нормальною в H якщо вона інваріантна при лівому приєднаному відображенню для всіх k з K. Обидві умови нормальності є еквівалентними, якщо антипод S є бієктивним. У цьому випадку A називається нормальною підалгеброю Гопфа.
Нормальна підалгебра Гопфа A в H задовольняє умові рівності підмножин: , де позначає ядро коодиниці K. З цієї умови нормальності випливає, що — ідеал алгебри Гопфа H (тобто є ідеалом алгебри в ядрі коодиниці, коідеалом коалебри й стійким під дією антипода). Як наслідок, можна визначити факторалгебру Гопфа і епіморфізм , аналогічно відповідним конструкціям нормальних підгруп і факторгруп у теорії груп. [4]
Remove ads
Приклади
Узагальнити
Перспектива
Remove ads
Когомології груп Лі
Узагальнити
Перспектива
Алгебра когомологій групи Лі — алгебра Гопфа: множення задано -добутком, а кодобуток
множенням групи .
Це спостереження було фактично джерелом поняття алгебри Гопфа. Використовуючи цю структуру, Гопф довів структурну теорему для алгебри когомологій груп Лі.
Теорема Гопфа [9] Нехай A — скінченновимірна, суперкомутативна, кокомутативна алгебра Гопфа над полем характеристики 0. Тоді A (як алгебра) є вільною зовнішньою алгеброю з генераторами непарного степеня.
Remove ads
Квантові групи
Всі приклади вище є або комутативними (тобто множення є комутативним) або кокомутативними (тобто Δ = T ∘ Δ, де T : H ⊗ H → H ⊗ H — перестановка тензорних множників, задана як T(x ⊗ y) = y ⊗ x). Іншими цікавими прикладами алгебр Гопфа — деякі деформації або «квантування» прикладу 4, які не є ні комутативними, ні кокомутативними. Ці алгебри Гопфа часто називають квантовими групами.
Ідея полягає в наступному: звичайна алгебрична група може бути описана в термінах алгебри Гопфа регулярних функцій. Ми можемо тоді думати про деформації цієї алгебри Гопфа як про опис деякої «квантованої» алгебричної групи (хоча вона і не є алгебричною групою). Багато властивостей алгебричних груп, а також конструкції з ними мають свої аналоги для деформованих алгебр Гопфа. Звідси назва «квантова група».
Remove ads
Аналогія з групами
Аксіоми груп можна подати за допомогою тих же діаграм (еквівалентностей, операцій) що й алгебри Гопфа, де H — множина, а не модуль. У цьому випадку:
- кільце R замінюється множиною з 1 елемента
- є природна коодиниця (відображення в єдиний елемент)
- є природний кодобуток (діагональне відображення)
- одиниця — нейтральний елемент групи
- множення — множення в групі
- антипод — обернений елементу в групі.
В цьому сенсі групи можна розглядати як алгебри Гопфа над полем з одного елемента. [10]
Remove ads
Примітки
Див. також
Література
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads