Топ питань
Часова шкала
Чат
Перспективи

Неперервний рівномірний розподіл

З Вікіпедії, вільної енциклопедії

Неперервний рівномірний розподіл
Remove ads

Рівномірний розподіл (неперервний) — в теорії імовірностей розподіл, який характеризується тим, що ймовірність будь-якого інтервала залежить тільки від його довжини.

Коротка інформація Неперервний рівномірний розподіл, Параметри ...
Remove ads

Визначення

Кажуть, що випадкова величина має неперервний рівномірний розподіл на відрізку , де , якщо щільність має вигляд:

Пишуть: . Деколи значення щільності в граничних точках і міняють на інші, наприклад . Так як інтеграл Лебега від щільності не залежить від поведінки останньої на множинах міри нуль, ці варіації не впливають на знаходження зв'язаних з цим розподілом імовірностей.

Remove ads

Функція розподілу

Узагальнити
Перспектива

Інтегруючи визначену вище щільність отримуємо:

Оскільки щільність рівномірного розподілу розривна в граничних точках відрізка , то функція розподілу в цих точках не є диференційовною. В інших точках справедлива рівність:

.
Remove ads

Функція моментів

Узагальнити
Перспектива

Простим інтегруванням отримуємо:

,

звідки знаходимо всі потрібні моменти неперервного рівномірного розподілу:

,
,
.

Таким чином

.
Remove ads

Стандартний рівномірний розподіл

Якщо , а , тобто , то такий неперервний рівномірний розподіл називають стандартним. Має місце твердження: Якщо випадкова величина , і , де , то . Таким чином, маючи генератор випадкового вибору із стандартного неперервного рівномірного розподілу, легко побудувати генератор вибору будь-якого неперервного рівномірного розподілу.

Remove ads

Див. також

Джерела

Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads