Топ питань
Часова шкала
Чат
Перспективи

Піраміда (геометрія)

З Вікіпедії, вільної енциклопедії

Піраміда (геометрія)
Remove ads

Пірамі́да (від грец. πυραμίς, род. відм. πῡρᾰμῐ́δος) багатогранник, який складається з плоского багатокутника і точки (яка не лежить у площині основи) та всіх відрізків, що сполучають вершину піраміди з точками основи. Відрізки, що сполучають вершину піраміди з вершинами основи, називаються бічними ребрами. Піраміда буває тупокутною (якщо який-небудь двогранний кут між бічною гранню і основою більше 90 градусів) і гострокутною.

Thumb
Неправильна шестигранна піраміда.
Thumb
Елементи піраміди.

Пряма піраміда це піраміда із вершиною, яка розміщена прямо над центром її основи. Не правильні піраміди називають похиленими пірамідами. Правильна піраміда має в основі правильний многокутник.[1][2]

Remove ads

Опис

Поверхня піраміди складається з основи і бічних граней. Кожна бічна грань трикутник. Однією з його вершин є вершина піраміди, а протилежною стороною — сторона основи піраміди.

Висотою піраміди є перпендикуляр, опущений з вершини піраміди на площину основи.

Піраміда називається n-кутною, якщо її основою є n-кутник. Для трикутної піраміди існує власна назва чотиригранник.

Надалі розглядатимемо лише піраміди з опуклим багатокутником в основі. Такі піраміди називаються опуклими многогранниками.

Правильна піраміда (довершена) — якщо її основою є правильний багатокутник, центр якого збігається з основою висоти піраміди. Бічна поверхня правильної піраміди дорівнює добутку півпериметра основи на апофему.

Вісь правильної піраміди пряма, яка містить її висоту. У правильній піраміді бічні ребра рівні між собою, а бічні грані — рівні рівнобедрені трикутники.

Висота бічної грані правильної піраміди, проведена з її вершини, називається апофемою. Бічною поверхнею піраміди називається сума площ її бічних граней.

Remove ads

Формули

  • Площа бічної поверхні правильної піраміди дорівнює добутку половини периметра (півпериметру) основи на апофему:
    ,
    де P — периметр, l апофема, n — число сторін основи, b — бічне ребро,  — кут при вершині піраміди
  • Об'єм піраміди дорівнює одній третій добутку площі її основи S на висоту h:
Remove ads

Особливі випадки піраміди

Узагальнити
Перспектива

Правильна піраміда

Піраміда називається правильною, якщо основою її є правильний багатокутник, а вершина проєктується в центр основи. Тоді вона має такі властивості:

  • Бічні ребра правильної піраміди рівні;
  • В правильній піраміді всі бічні грані конгруентні трикутники;
  • В будь-яку правильну піраміду можна як вписати, так і описати навколо неї сферу;
  • Якщо центри вписаної і описаної сфери збігаються, то сума плоских кутів при вершині піраміди дорівнює , а кожен з них відповідно , де  — кількість сторін багатокутника основи[3];
  • Площа бічної поверхні правильної піраміди дорівнює половині добутку периметра основи на апофему.
  • Тілесний кут при вершині правильної n-кутної піраміди[4]

Прямокутна піраміда

Піраміда називається прямокутною, якщо одне з бічних ребер піраміди перпендикулярне основі. В даному випадку, це ребро і є висотою піраміди.

Тетраедр

Тетраедром називається трикутна піраміда. У тетраедра кожна з граней може бути прийнята за основу піраміди. Крім того, існує велика різниця між поняттями «правильна трикутна піраміда» і «правильний тетраедр». Правильна трикутна піраміда — це піраміда з правильним трикутником в основі (межі ж повинні бути рівнобокими трикутниками). Правильним тетраедром є тетраедр, у якого всі грані є рівносторонніми трикутниками.

Remove ads

Властивості

Такі три твердження є еквівалентними:

  1. Бічні ребра піраміди рівні;
  2. Бічні ребра піраміди нахилені до площини її основи під рівними кутами;
  3. Проєкція вершини піраміди на площину її основи збігається з центром кола, описаного навколо основи.

Такі три твердження також є еквівалентними:

  1. Вершина піраміди рівновіддалена від усіх сторін її основи;
  2. Двогранні кути при основі піраміди рівні;
  3. Вершина піраміди проєктується до центру кола, вписаного в її основу.

Зрізана піраміда утворена пірамідою та площиною, яка паралельна до основи піраміди та перетинає її, відтинаючи подібну піраміду.

Remove ads

Див. також

Примітки

Джерела

Посилання

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads