Топ питань
Часова шкала
Чат
Перспективи
Теорема Рімана про відображення
З Вікіпедії, вільної енциклопедії
Remove ads
Теорема Рімана про відображення — теорема у комплексному аналізі, що стверджує, що для довільної однозв'язної відкритої підмножини комплексної площини , що не збігається з усією , існує бієктивне голоморфне відображення із множини на відкритий одиничний круг
де
Remove ads
Зауваження
Голоморфна функція, що є взаємно-однозначною (тобто оборотною), є конформним відображенням, так що теорему можна формулювати в термінах конформної еквівалентності. Також, не має значення, стверджувати про існування функції або оберненої . Можна навіть вимагати існування відображення з будь-якої однозв'язної області в будь-яку іншу однозв'язну — твердження теореми від цього не стане сильнішим.
Дана теорема здається парадоксальною, оскільки умови на область є чисто топологічними і ніяк не обумовлюють геометрію її межі. Насправді, порівняно легко будуються конформні відображення круга не тільки на многокутники і подібні фігури, але і області на зразок круга з одним вирізаним радіусом і т. д. Можна навіть побудувати функцію на кругу, образ якої має ніде не гладку межу. Втім, Ріман зумів довести теорему лише в припущенні кускової гладкості межі.
Remove ads
Єдиність відображення
Оскільки одиничний круг легко нетотожно конформно відобразити на себе, то шукане конформне відображення єдиним бути не може. Проте, легко бачити, що вся неоднозначність в побудові відображення відноситься до автоморфізмів одиничного круга, які утворюють дійсну 3-мірну групу Лі. Зокрема, якщо — елемент множини і φ — довільний кут, тоді існує єдине відображення із теореми Рімана, яке додатково задовольняє умовам відображає в і аргумент похідної в точці рівний куту φ.
Remove ads
Доведення
Узагальнити
Перспектива
Доведемо, що в існує хоча б одна голоморфна і ін'єктивна функція, що по модулю є меншою 1. За умовою межа містить дві різні точки Квадратний корінь має аналітичне продовження вздовж будь-якого шляху в області і оскільки ця область є однозв'язною, то за теоремою про монодромію[en] цей корінь допускає виділення в двох однозначних гілок і що відрізняються знаком.
Кожна з цих гілок є ін'єктивною в , бо з рівності випливає рівність
а з неї, зважаючи на ін'єктивність дробово-лінійної функції, рівність . Ці гілки відображають відповідно на області і , які не мають спільних точок, бо в іншому випадку знайшлися б точки такі, що , але з останнього рівності знову випливає рівність , а тому що неможливо оскільки для всіх
Область містить деякий круг а тому в не набуває значень з цього кола. Тому функція
очевидно є голоморфною і ін'єктивною і обмеженою в :
Позначимо як сім'ю всіх голоморфних і ін'єктивних в функцій, по модулю всюди менших 1. Ця
сім'я є непустою, бо містить функцію і по теоремі Монтеля вона є нормальною. Оскільки є ін'єктивною в , то у довільній точці Підсім'я сім'ї , до якої належать усі функції з для яких
в деякій фіксованій точці є нормальною. Також якщо послідовність функцій збігається рівномірно на компактних підмножинах то границя цієї послідовності належить .
Дійсно з наслідку теореми Гурвіца границя послідовності функцій , що сходиться рівномірно на будь-якій компактній підмножині , може бути лише ін'єктивною функцією або константою але останній випадок виключений нерівністю . Також якщо для елементів цієї послідовності, то і для граничної функції Отож також і
Розглянемо на функціонал Він є неперервним адже для рівномірно збіжної на компактах послідовності із границею , послідовність похідних теж рівномірно на компактах збігається до зокрема
Оскільки є компактною (у просторі голоморфних функцій із компактно-відкритою топологією) множиною то існує функція на якій цей функціонал досягає максимуму, тобто така, що для всіх виконується нерівність
Оскільки функція то вона конформно відображає в одиничний круг . Також оскільки в іншому випадку в була б функція
для котрої
що суперечить означенню функції .
Функція відображає на весь круг . Справді, нехай не приймає в деякого значення . Оскільки , то . Але і значення не приймається цією функцією в (оскільки ), і, отже, по теоремі про монодромію в можна виділити однозначну гілку кореня
яка належить . Але тоді належить і функція
для котрої
Але бо , тобто і що суперечить означенню функції .
Remove ads
Узагальнення
Якщо замість області на комплексній площині розглядати область на довільній ріманової поверхні, то ми приходимо до часткового випадку теореми про уніформізацію:
- для довільної однозв'язної відкритої підмножини ріманової поверхні існує бієктивне голоморфне відображення ( із множини на одну з множин:
- ріманову сферу;
- комплексну площину;
- одиничний круг.
Спроби узагальнити дану теорему на дійсну конформну геометрію в розмірностях вище 2, як і на комплексну геометрію в розмірностях вище 1, використовуючи поняття голоморфного відображення, до особливих успіхів не привели. Доведено, що і в тому і іншому випадку для еквівалентності областей вже недостатньо чисто топологічних умов. У будь-якому випадку, такі загальні твердження про еквівалентність областей в багатовимірних просторах науці не відомі.
Remove ads
Див. також
Джерела
- Ляшко І.І., Ємельянов В.Ф., Боярчук О.К. Математичний аналіз. Частина 2. — К. : Вища школа, 1993. — 375 с. — ISBN 5-11-003758-2.(укр.)
- Шабат Б. В. Введение в комплексный анализ. — М.: Наука, 1969. — 577 с.
- John B. Conway, Functions of one complex variable, Springer-Verlag, 1978, ISBN 0-387-90328-3
- Reinhold Remmert, Classical topics in complex function theory, Springer-Verlag, 1998, ISBN 0-387-98221-3
- Теорема Рімана про відображення на PlanetMath.(англ.)
Remove ads
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads