Топ питань
Часова шкала
Чат
Перспективи
Тригонометричний ряд
З Вікіпедії, вільної енциклопедії
Remove ads
У математиці тригонометричний ряд — це ряд вигляду:
Його називають рядом Фур'є, якщо доданки і мають вигляд:
де є інтегровною функцією .
Remove ads
Нулі тригонометричного ряду
Унікальність і нулі тригонометричних рядів активно досліджували в Європі XIX століття. По-перше, Георг Кантор довів, що якщо тригонометричний ряд збіжний до функції на інтервалі , яка тотожно дорівнює нулю або, загальніше, відмінна від нуля не більше ніж у скінченній кількості точок, то всі коефіцієнти ряду дорівнюють нулю.
Пізніше Кантор довів, що навіть якщо множина S, на якій відмінна від нуля, є нескінченною, але похідна множина S' від S скінченна, то всі коефіцієнти дорівнюють нулю. Насправді він довів загальніший результат. Нехай S0 = S і Sk+1 — похідна множина від Sk. Якщо існує скінченне число n, для якого Sn скінченна, то всі коефіцієнти дорівнюють нулю. Пізніше Лебег довів, що якщо існує зліченно нескінченний ординал α такий, що Sα скінченна, то всі коефіцієнти ряду дорівнюють нулю. Робота Кантора над проблемою унікальності, як відомо, привела його до винаходу трансфінітних порядкових чисел, які з'явилися як індекси α в Sα[1].
Remove ads
Див. також
Джерела
- Григорій Михайлович Фіхтенгольц. Курс диференціального та інтегрального числення. — 2025. — 2391 с.(укр.)
- Банах С. Диференціальне та інтегральне числення = Rachunek różniczkowy i całkowy. — 2-е. — М. : Наука, 1966. — 436 с.(рос.)
- Ляшко І.І., Ємельянов В.Ф., Боярчук О.К. Математичний аналіз. Частина 2. — К. : Вища школа, 1993. — 375 с. — ISBN 5-11-003758-2.(укр.)
- Ляшко І. І., Боярчук О. К., Гай Я. Г., Головач Г. П. Математичний аналіз в прикладах і задачах. — 2025. — 1000+ с.(укр.)
- Дороговцев А. Я. Математичний аналіз. Частина 1. — К. : Либідь, 1993. — 320 с. — ISBN 5-325-00380-1.(укр.)
- E.T. Whittaker, G. N. Watson . A Course of Modern Analysis. — 5th. — Cambridge, 1902,1927. — 668 с.(англ.)
Примітки
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads