Топ питань
Часова шкала
Чат
Перспективи

Шестисоткомірник

З Вікіпедії, вільної енциклопедії

Шестисоткомірник
Remove ads

Пра́вильний шестисоткомі́рник, або просто шестисоткомі́рник[1], або гекзакосіхор (від дав.-гр. ἑξἀκόσιοι — «шістсот» і χώρος — «місце, простір») — один із шести правильних багатокомірників у чотиривимірному просторі. Двоїстий стодвадцятикомірнику.

Більше інформації Шестисоткомірник ...
Thumb
Проєкція обертового шестисоткомірника в тривимірний простір
Thumb
Розгортка

Відкрив Людвіг Шлефлі в середині 1850-х років[2]. Символ Шлефлі шестисоткомірника — {3,3,5}.

Remove ads

Опис

Обмежений 600 тривимірними комірками — однаковими правильними тетраедрами. Кут між двома суміжними комірками дорівнює

1200 двовимірних граней — однакові правильні трикутники. Кожна грань розділяє 2 комірки, що прилягають до неї.

Має 720 ребер рівної довжини. На кожному ребрі сходяться по 5 граней та по 5 комірок.

Має 120 вершин. У кожній вершині сходяться по 12 ребер, по 30 граней і 20 комірок.

Remove ads

У координатах

Узагальнити
Перспектива

Шестисотячейник можна розмістити в декартовій системі координат так, щоб:

  • 8 його вершин мали координати (ці вершини розташовані так само, як вершини шістнадцятикомірника);
  • ще 16 вершин — координати (розташовані так само, як вершини тесеракта ; крім того, разом з 8 попередніми вони дають вершини двадцятичотирьохкомірника);

Початок координат буде центром симетрії багатокомірника, а також центром його вписаної, описаної та напіввписаних тривимірних гіперсфер.

Remove ads

Ортогональні проєкції на площину

Thumb
Thumb
Thumb
Thumb
Thumb
Thumb

Метричні характеристики

Узагальнити
Перспектива

Якщо шестисоткомірник має ребро довжини то його чотиривимірний гіпероб'єм і тривимірна гіперплоща поверхні виражаються відповідно як

Радіус описаної тривимірної гіперсфери (що проходить через усі вершини багатокомірника) при цьому дорівнює

радіус зовнішньої напіввписаної гіперсфери (що дотикається до всіх ребер у їхніх серединах) -

радіус внутрішньої напіввписаної гіперсфери (що дотикається до всіх граней у їхніх центрах)

радіус вписаної гіперсфери (що дотикається до всіх комірок у їхніх центрах) -

Remove ads

Примітки

Посилання

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads