热门问题
时间线
聊天
视角

大数 (数学)

来自维基百科,自由的百科全书

大数 (数学)
Remove ads

大数是指远远超出了日常生活使用范围(例如简单的计数或金融交易)的数字,在各个领域都发挥着至关重要的作用。这些庞大的数量在数学宇宙学密码学统计力学中占有重要地位。虽然它们通常表现为较大的正整数,但它们也可以在不同情况下呈现其他形式(例如P进数)。大数学(英语:Googology[1]深入研究了这些巨大数字实体的命名约定和属性。

各种各样的
基本

Thumb

延伸
其他

圆周率
自然对数的底
虚数单位
无限大

Remove ads

表示法

科学计数法

大数字通常采用科学计数法计数,即把数字记成ɑ×10n形式(其中1≤|ɑ|<10)。如59000写作5.9×104等。

分级法

更多信息 数量级, 中文万进制 ...

著名的大数

美国数学家爱德华·卡斯纳(Edward Kasner)在1940年创造,代表10100(1后面接100个0,按数位念作“一万亿亿亿亿亿亿亿亿亿亿亿亿”,一万后念12个“亿”)

表示10的一个古戈尔次,即1010100(1后面接10100个0)。

表示素数计数函数对数积分函数交叉点的数值上界,斯奎斯于1933年证明了其中一个上界,又被称作第一斯奎斯数

(左为准确值,右为近似值)。
  • 葛立恒数(简称G64,因为必须使用64层高德纳箭号表示法才表示得出来)
  • TREE(3)英语TREE(3)
  • 拉约数(英语:Rayo's number
Remove ads

大数记号

虽然在现实世界中,使用指数来表示大数就已经绰绰有余,但是在少数的数学问题中会用到的大数,如葛立恒数,仍然是不能用指数来表示的。为了表达这样的大数,数学家们想出了以下记号:

  • 高德纳箭号表示法多层嵌套的指数塔,是一个简单的符号。
  • 超运算按照加法、乘法和幂的递回模式来构造更高级的运算,本质上跟箭号表示法是一样的。
  • 康威链式箭号表示法这种记号是箭号表示法的一种延伸,它能够表示远远超出葛立恒数的数。
  • 斯坦豪斯-莫泽表示法透过多边形来表示大数。
  • 超阶乘阶乘的一个扩展。
  • 阿克曼函数是一个二元函数,增长率非常快,跟高德纳箭号表示法是同一个等级。
  • 旋转箭号表示法它是箭号表示法跟链式箭号表示法的延伸,并且所能构造的大数比它们更大。
  • BEAF就算是开头的线性数阵等级,也远远超越了上面的大多数记号。
  • SUPER它是上面线性数阵的延伸,能够构造出远远大于上面线性数阵的超级大数。

大数表示发展史

大数的表示最早在古希腊数学家阿基米德开始,他在理论上提出了一种表示大数的方法,但他是否创设了适当的符号不得而知。在他的著作《论数沙》中有这样一段文字:

有人认为,无论是在叙拉古城,还是在整个西西里岛或者在世界上有人烟和没有人迹的地方,沙粒的数目都是无穷的;也有人认为沙粒的数目不是无穷的‘但是想表示沙子的数目是办不到的……但是,我要告诉大家,用我找到的方法,不但能表示出占地球那么大地方的沙粒的数目,甚至还能表示把所有的海洋洞穴都填满了沙粒,这些沙粒总数不会超过1后面有100个零。

在这段文字中,“1后面连续有100个零”即10100[4]

参考文献

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads